International **Online Conference**

Algebraic
and Geometric **Methods of Analysis**

dedicate to the memory of Yuriy Trokhymchuk $(17.03.1928 - 18.12.2019)$

May 25-28, 2021 Odesa, Ukraine

LIST OF TOPICS

- Topological methods in analysis
- Geometric problems of complex and mathematical analysis
- Algebraic methods in geometry
- \bullet Differential geometry in the whole
- Geometry and topology of differentiable manifolds
- General and algebraic topology
- Geometric and topological methods in natural sciences

ORGANIZERS

- Ministry of Education and Science of Ukraine
- Odesa National Academy of Food Technologies
- Institute of Mathematics of the National Academy of Sciences of Ukraine
- Taras Shevchenko National University of Kyiv
- International Geometry Center
- Kyiv Mathematical Society

SCIENTIFIC COMMITTEE

Drozd Yu.

 $(Kyiv, Ukraine)$ Maksymenko S. $(Kyiv, Ukraine)$ Plaksa S. $(Kyiv, Ukraine)$ Prishlyak A. $(Kyiv, Ukraine)$

Bakhtin O.

 $(Kyiv, Ukraine)$ Balan V. $(Bucharest, Romania)$ Banakh T. $(Lviv, Ukraine)$ Borysenko O. $(Kharkiv, Ukraine)$

Cherevko Ye. $(Odesa, Ukraine)$ Fedchenko Yu. $(Odesa, Ukraine)$ Karlova O. $(Chemists, Ukraine)$ Kiosak V. $(Odessa, Ukraine)$ Konovenko N. $(Odessa, Ukraine)$ Lyubashenko V. $(Kyiv, Ukraine)$ Matsumoto K. $(Ya magata, Japan)$ Mormul P. $(Warsaw, Poland)$

Mykhailyuik V. $(Chernivtsi, Ukraine)$ Plachta L. $(Krakov, Poland)$ Pokas S. $(Odessa, Ukraine)$ Sabitov I. $(Moscow, Russia)$ Savchenko O. $(Kherson, Ukraine)$ Sergeeva A. $(Odesa, Ukraine)$ Shelekhov A. $(Tver, Russia)$ Zarichnyi M. $(Lviv, Ukraine)$

Special mean and total curvature of a dual surface in isotropic spaces

Ismoilov Sherzodbek Shokirjon ugli (National University of Uzbekistan, Tashkent, Uzbekistan) $E-mail:$ sh.ismoilov@nuu.ru

In this paper, we study the properties of the total and mean curvatures of a surface and its dual image in an isotropic space. We prove the equality of the mean curvature and the second quadratic forms. The relation of the mean curvature of a surface to its dual surface is found. The superimposed space method is used to investigate the geometric characteristics of a surface relative to the normal and special normal.

Consider an affine space A_3 with the coordinate system Oxyz. Let $\overrightarrow{X}(x_1, y_1, z_1)$ and $\overrightarrow{Y}(x_2, y_2, z_2)$ be vectors of A_3 .

Definition 1. If the scalar product of the vectors \overrightarrow{X} and \overrightarrow{Y} is defined by the formula

$$
\begin{cases}\n(X,Y)_1 = x_1x_2 + y_1y_2 & \text{if } x_1x_2 + y_1y_2 \neq 0, \\
(X,Y)_2 = z_1z_2 & \text{if } x_1x_2 + y_1y_2 = 0,\n\end{cases}
$$
\n(1)

then A_3 is said to be an isotropic space R_3^2 . [1, 2]

Geometry in a plane of an isotropic space will be Euclidean if it is not parallel to the αz axis. When a plane is parallel to oz , the geometry on it will be Galilean.

Since an isotropic space has an affine structure, there is an affine transformation that preserves the scalar product by formula (1) . This motion of an isotropic space is given by the formula $[5]$

$$
\begin{cases}\nx' = x\cos\alpha - y\sin\alpha + a \\
y' = x\sin\alpha + y\cos\alpha + b \\
z' = Ax + By + z + c\n\end{cases}
$$
\n(2)

The second sphere is defined as a surface with the constant normal curvature. This sphere of the unit radius has the equation $[8]$

$$
x^2 + y^2 = 2z,\tag{3}
$$

we call it the isotropic sphere.

Let a plane π be given in R_3^2 , which is not parallel to the *oz* axis of the space. Consider the section of the isotropic sphere by the plane π and denote it by Γ . Since an isotropic sphere is a paraboloid of revolution, the section Γ by a plane is a closed curve. It was proved in [2] that Γ is an ellipse.

Draw tangent planes to isotropic sphere (3) through points $M \in \Gamma$. Denote the set of tangent planes to points F by $\{\pi\}.$

The following statement holds.

Theorem 2. All planes of the set $\{\pi\}$ intersect at one point. [6]

If a plane π_0 is given by the equation

$$
z = Ax + By + C,\tag{4}
$$

then the intersection point of the planes of the set $\{\pi\}$ will be $(A, B, -C)$.

Definition 3. The point $(A, B, -C)$ will be called dual to plane (4) with respect to isotropic sphere (3) [6]

Let us draw the tangent plane π_M to the surface F at the point $M(x_0, y_0, z_0)$. Denote by M^* the dual image of the tangent space π_M with respect to the isotropic sphere. When the point $M \in F$ changes on the surface F , its dual image describes a surface F^* .

Definition 4. The surface F^* is said to be the dual surface to the surface F in an isotropic space. $[6]$

When F is given by the equation $z = f(x, y)$, F^* has the equations

$$
\begin{cases}\nx^*(u,v) = f'_u(u,v) \\
y^*(u,v) = f'_v(u,v) \\
z^*(u,v) = u \cdot f'_u(u,v) + v \cdot f'_u(u,v) - f(u,v)\n\end{cases}
$$
\n(5)

Lemma 5. When the total curvature of a surface $K = 0$, its dual image is a point or a curve.

Theorem 6. The product of the total curvatures of the surface F and the dual surface F^* of the isotropic space is equal to unity:

$$
K \cdot K^* = 1. \tag{6}
$$

Lemma 7. The special mean curvatures of the surfaces, given by the functions $\overrightarrow{R_1}(u, v) = f_u \cdot \overrightarrow{i} + f_v \cdot \overrightarrow{j} + f_u \cdot \overrightarrow{k}$ and $\overrightarrow{R_2}(u, v) = f_u \cdot \overrightarrow{i} + f_v \cdot \overrightarrow{j} + f_v \cdot \overrightarrow{k}$, are calculated, respectively, by the formulas

$$
H_m(R_1) = \frac{f_{uvv} \left(f_{uu}^2 + f_{uv}^2\right) - 2f_{uuv} \left(f_{uu} f_{uv} + f_{uv} f_{vv}\right) + f_{uuu} \left(f_{uv}^2 + f_{vv}^2\right)}{\left[f_{uu}^{\prime\prime} f_{vv}^{\prime\prime} - f_{uv}^{\prime\prime\prime}\right]^2},\tag{7}
$$

$$
H_m(R_2) = \frac{f_{vvv}\left(f_{uu}^2 + f_{uv}^2\right) - 2f_{uvv}\left(f_{uu}f_{uv} + f_{uv}f_{vv}\right) + f_{uuv}\left(f_{uv}^2 + f_{vv}^2\right)}{\left[f_{uu}''f_{vv}'' - f_{uv}''^2\right]^2}.
$$
\n(8)

Lemma 8. The mean curvatures of the surfaces, given by the functions $\overrightarrow{R_1}(u, v)$ and $\overrightarrow{R_2}(u, v)$, are equal to zero.

Lemma 9. The mean curvature and special mean curvature of the dual surface (5) and the surfaces $R_1(u, v)$, $R_2(u, v)$ are connected by the equality:

$$
H_m^* = H^* + u \cdot H_m(R_1) + v \cdot H_m(R_2). \tag{9}
$$

Theorem 10. The mean curvatures defined with respect to the normal and the special normal are equal: $H_m^* = H^*$.

Theorem 11. If $\Omega = 0$, then the special total curvature of the surface F^* is expressed in terms of the special total curvatures of the surfaces F , Z_1 , and Z_2 .

REFERENCES

- [1] Artykbaev A., Sokolov, D. D. Geometry as a whole in space-time. T .: Fan. 1991.-179 p.
- [2] Artikbayev A, Ismoilov Sh. O secheniya ploskosti so izotropnogo prostranstva. Scientific Journal of Samarkand University 2020; 5(123): 84-89
- [3] Avdin M. E., Classification results on surfaces in the isotropic 3-space, AKU J. Sci. Eng., 16(2016), 239-246.
- [4] Dede, C. Ekici, and W. Goemans Surfaces of Revolution with Vanishing Curvature in Galilean 3-Space, Journal of Mathematical Physics, Analysis, Geometry 2018, Vol. 14, No. 2, pp. 141-152
- [5] Ismoilov Sh, Sultonov B. Cyclic surfaces in pseudo-euclidean space. International Journal of Statistics and Applied Mathematics 2020; 3: 28-31
- [6] Ismoilov Sh. Dual image in isotropic space. NamSU konf 2016; 1: 36-40.
- [7] Lone M.S., Karacan M.K., Dual translation surfaces in the three dimensional simply isotropic space I_3^1 , Tamkang Journal of mathematics Volume 49, Number 1, 67-77, March 2018
- [8] Strubecker K., "Differentialgeometrie des isotropen Raumes II"// Math.Z.47(1942) 743-777

