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Special mean and total curvature of a dual surface in isotropic
spaces
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In this paper, we study the properties of the total and mean curvatures of a surface and its
dual image in an isotropic space. We prove the equality of the mean curvature and the second
quadratic forms. The relation of the mean curvature of a surface to its dual surface is found. The
superimposed space method is used to investigate the geometric characteristics of a surface relative
to the normal and special normal.

Consider an a�ne space A3 with the coordinate system Oxyz. Let
→
X(x1, y1, z1) and

→
Y (x2, y2, z2)

be vectors of A3.

De�nition 1. If the scalar product of the vectors
→
Xand

→
Y is de�ned by the formula

{
(X,Y )1 = x1x2 + y1y2 if x1x2 + y1y2 6= 0,

(X,Y )2 = z1z2 if x1x2 + y1y2 = 0,
(1)

then A3 is said to be an isotropic space R2
3. [1, 2]

Geometry in a plane of an isotropic space will be Euclidean if it is not parallel to the oz axis.
When a plane is parallel to oz, the geometry on it will be Galilean.
Since an isotropic space has an a�ne structure, there is an a�ne transformation that preserves

the scalar product by formula (1). This motion of an isotropic space is given by the formula [5]




x′ = x cosα− y sinα+ a
y′ = x sinα+ y cosα+ b
z′ = Ax+By + z + c

(2)

The second sphere is de�ned as a surface with the constant normal curvature. This sphere of the
unit radius has the equation [8]

x2 + y2 = 2z, (3)

we call it the isotropic sphere.
Let a plane π be given in R2

3, which is not parallel to the oz axis of the space. Consider the
section of the isotropic sphere by the plane π and denote it by Γ. Since an isotropic sphere is a
paraboloid of revolution, the section Γ by a plane is a closed curve. It was proved in [2] that Γ is
an ellipse.
Draw tangent planes to isotropic sphere (3) through pointsM ∈ Γ. Denote the set of tangent

planes to points F by {π}.
The following statement holds.

Theorem 2. All planes of the set {π} intersect at one point. [6]
If a plane π0 is given by the equation

z = Ax+By + C, (4)

then the intersection point of the planes of the set {π} will be (A,B,−C).

De�nition 3. The point (A,B,−C) will be called dual to plane (4) with respect to isotropic sphere
(3). [6]
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Let us draw the tangent plane πM to the surface F at the point M(x0, y0, z0). Denote by M∗ the
dual image of the tangent space πM with respect to the isotropic sphere. When the point M ∈ F
changes on the surface F , its dual image describes a surface F ∗.

De�nition 4. . The surface F ∗ is said to be the dual surface to the surface F in an isotropic
space. [6]

When F is given by the equation z = f(x, y), F ∗ has the equations




x∗(u, v) = f ′u(u, v)

y∗(u, v) = f ′v(u, v)

z∗(u, v) = u · f ′u(u, v) + v · f ′u(u, v)− f(u, v)

(5)

Lemma 5. When the total curvature of a surface K = 0, its dual image is a point or a curve.

Theorem 6. The product of the total curvatures of the surface Fand the dual surface F ∗ of the
isotropic space is equal to unity:

K ·K∗ = 1. (6)

Lemma 7. The special mean curvatures of the surfaces, given by the functions
−→
R1(u, v) = fu ·

−→
i +

fv ·
−→
j + fu ·

−→
k and

−→
R2(u, v) = fu ·

−→
i + fv ·

−→
j + fv ·

−→
k , are calculated, respectively, by the formulas

Hm(R1) =
fuvv

(
f2
uu + f2

uv

)
− 2fuuv (fuufuv + fuvfvv) + fuuu

(
f2
uv + f2

vv

)

[f ′′uuf ′′vv − f ′′uv2]2
, (7)

Hm(R2) =
fvvv

(
f2
uu + f2

uv

)
− 2fuvv (fuufuv + fuvfvv) + fuuv

(
f2
uv + f2

vv

)

[f ′′uuf ′′vv − f ′′uv2]2
. (8)

Lemma 8. The mean curvatures of the surfaces, given by the functions
−→
R1(u, v) and

−→
R2(u, v), are

equal to zero.

Lemma 9. The mean curvature and special mean curvature of the dual surface (5) and the surfaces
R1(u, v), R2(u, v) are connected by the equality:

H∗m = H∗ + u ·Hm(R1) + v ·Hm(R2). (9)

Theorem 10. The mean curvatures de�ned with respect to the normal and the special normal are
equal: H∗m = H∗.

Theorem 11. If Ω = 0, then the special total curvature of the surface F ∗ is expressed in terms of
the special total curvatures of the surfaces F , Z1, and Z2.
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