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• The present study is the first attempt of
a statistical landslide susceptibility anal-
ysis for part of the territory of
Uzbekistan.

• Statistical index (SI), frequency ratio
(FR) and certainty factor (CF) are
employed for the landslide susceptibil-
ity mapping.

• The statistical index method results in
the best model performance.

• The landslide-predictor relationships
confirm findings of previous studies.

• The results perform slightly better than
those obtained in some previous stud-
ies, possibly due to the polygon-based
inventory used.
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The Bostanlik district, Uzbekistan, is characterized bymountainous terrain susceptible to landslides. The present
study aims at creating a statistically derived landslide susceptibility map – the first of its type for Uzbekistan - for
part of the area in order to inform risk management. Statistical index (SI), frequency ratio (FR) and certainty fac-
tor (CF) are employed and compared for this purpose. Ten predictor layers are used for the analysis, including ge-
ology, soil, land use and land cover, slope, aspect, elevation, distance to lineaments, distance to faults, distance to
roads, and distance to streams. 170 landslide polygons aremapped based onGeoEye-1 andGoogle Earth imagery.
119 (70%) out of them are randomly selected and used for the training of the methods, whereas 51 (30%) are
retained for the evaluation of the results. The three landslide susceptibility maps are split into five classes, i.e.
very low, low, moderate, high, and very high. The evaluation of the results obtained builds on the area under
the success rate andprediction rate curves (AUC). The training accuracies are 82.1%, 74.3% and 74%,while the pre-
diction accuracies are 80%, 70% and 71%, for the SI, FR and CF methods, respectively. The spatial relationships be-
tween the landslides and the predictor layers confirmed the results of previous studies conducted in other areas,
whereas model performancewas slightly higher than in some earlier studies – possibly a benefit of the polygon-
based landslide inventory.
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1. Introduction

Landslides are common hazardous processes, which frequently
cause loss of life and property inmountainous and hilly areas all around
the world (Gutiérrez et al., 2015; Chen et al., 2018; Hong et al., 2018).
Besides other types of hazards such as earthquakes, droughts and
floods, the territory of Uzbekistan is also prone to landsliding. Based
on the research conducted by the Central Asia and Caucasus Disaster
Risk Management Initiative (CAC DRMI) from 1988 to 2007, 23% of all
recorded natural disasters in Uzbekistan are the consequence of land-
slide processes. During the past 80 years, 2600 landslide events were
documented in Uzbekistan. Around 50 people lost their lives during a
landslide in the Angren region on 4 May 1991 (CACDRMI, 2009).

The Bostanlik district is one of the most landslide-prone areas of
Uzbekistan. Most of the landslides are triggered by earthquakes, snow
melting or precipitation, or combinations thereof. The presence of a
mountain reservoir increases the frequency of landslide occurrence, in
particular for areas near the water body (Juliev et al., 2017). Around
65% of all landslides in Uzbekistan are located in the Tashkent region,
which the Bostanlik district forms part of. Consequently, themonitoring
of existing landslides is necessary, and landslide susceptibility assess-
ments are highly recommended as a basis to mitigate these hazards.

Landslide hazard and risk assessments start from landslide suscepti-
bility mapping of the territory under investigation (Van Westen et al.,
2008; Golovko et al., 2017). Generally, landslide susceptibility is the spa-
tial probability of landsliding in a given area, depending on a combina-
tion of various factors such as geology, land use and land cover
(LULC), tectonics, slope, aspect, and others (Guzzetti et al., 2006; Wu
et al., 2016). During the last decades, a variety of approaches for land-
slide susceptibility analysis have been developed. They are categorized
into heuristic, physically-based and statistical methods (Van Westen,
2002; Bilaşco et al., 2011; Althuwaynee et al., 2012; Devkota et al.,
2013; Ozdemir and Altural, 2013; Akbari et al., 2014; Wang et al.,
2015; Basharat et al., 2016; Chen et al., 2016; Hussin et al., 2016; Ilia
and Tsangaratos, 2016; Zare et al., 2013; Vakhshoori and Zare, 2016;
Cui et al., 2017; Fan et al., 2017; Hong et al., 2017).

Few studies on landslide susceptibility mapping in the territory of
Central Asia have yet been documented. Saponaro et al. (2015a) con-
ducted research on earthquake-triggered landslide susceptibility,
whereas Saponaro et al. (2015b) performed a statistical landslide sus-
ceptibility analysis for the entire territory of Kyrgyzstan. Golovko et al.
(2017) compared an inventory of landslides automatically detected
from satellite data with an inventory derived frommapping by experts.

The main scope of the present study is to derive and to evaluate a
landslide susceptibility map for the surroundings of the Charvak Reser-
voir, a very important touristic site in the Bostanlik district. This work is
Table 1
Pamir Hindukush Earthquakes and landslides occurred in Tashkent Province, Uzbekistan.

Date Depth,
km

Magnitude Volume of landslides,
mln/m3

Place of
occurrence

21.05.1969 217 5.8 0.24 Tashkent
Province

06.10.1969 203 5.5 2.0 Tashkent
Province

06.10.1969 203 5.5 0.7 Tashkent
Province

16.05.1995 189 5.9 25.0 Tashkent
Province

20.03.1998 227 6.0 2.0 Tashkent
Province

05.04.2004 187 6.6 0.3 Tashkent
Province

05.04.2004 187 6.6 50.0 Tashkent
Province

03.04.2007 222 6.7 8.0 Tashkent
Province
the first attempt of a statistical landslide susceptibility analysis for part
of the territory of Uzbekistan. The main contributions/novelties can be
summarized as follows:

• General: by applying the established techniques to a yet unstudied
area, the work contributes to increase the robustness of knowledge
on the relationship between landslides and possible causative factors.

• Regional: increased knowledge of landslide susceptibility and causa-
tive factors in the surroundings of the Charvak Reservoir in the
Bostanlik District, Uzbekistan. The results presented shall represent
a valuable basis for the government authorities and stakeholders to
inform future land use planning and risk mitigation activities.

• Methodical: assessment of the gain of a polygon-based landslide in-
ventory derived from high-resolution satellite data in terms of
model performance, compared to a point-based inventory.

2. Materials and methods

2.1. Study area

The Bostanlik district is located in the north-eastern part of
Uzbekistan between 41°00′ and 42°20′ North and 69°30′ and 71°20′
East. With a total area of 4982 km2, it is the largest district in the
Tashkent region. The administrative center is the city of Gazalkent. Ac-
cording to the census of 2000, there were 142,900 people living in the
district, whereas according to the census of 2013, about 160,000 people
inhabited the area with N60% of the residents living in rural areas. The
largest recreation sites of Uzbekistan are located in Bostanlik district.

Almost the entire area is covered by high mountains such as the
Western Tien Shan, Karzhantau, Pskem, Ugam and Chatkal. The eleva-
tion varies from 568 m to the summit of Adelung at 4301 m asl. Eleva-
tion generally increases from west to east and from south to north.
The district further belongs to a seismically active zone, resulting in
more than eight earthquakes with the different magnitude occurring
on average per year. Table 1 shows the relation between the significant
Pamir-Hindukush earthquake events and the landslideswhich occurred
thereafter (Niyazov and Nurtaev, 2013).

The area is further characterized by a continental climate: annual
meanminimum and maximum, and absolute minimum and maximum
temperatures are−9 °C, +21 °C,−26 °C and +46 °C, respectively. The
total amount of precipitation measured at the meteorological stations
reaches up to 800–1200 mm per year. The main drainage line of the
area is the Chirchik River. Within the district, the Charvak Reservoir
operates with an area of coverage of 40 km2 and with 2 billion m3 of
storage volume (Belolipov et al., 2013).

We have selected the surroundings of the Charvak Reservoir, cover-
ing an area of approx. 177 km2, for the landslide susceptibility analysis
(Fig. 1). The dominant landslide types observed in the study area are
translational slides, rotational slides, earth flows, debris flows and de-
bris slides, with broadly varying volumes.

2.2. Data preparation

2.2.1. Landslide inventory
Landslide inventories represent an important basis for statistical

landslide susceptibility analyses and can be prepared in various ways
(Sara et al., 2015). High and very high-resolution optical images from
Google Earth are most commonly used in newer studies (Sato and
Harp, 2009). In the present study, Google Earth and GeoEye-1 satellite
data are employed. 170 landslides are mapped in total. Thereby, one
polygon is placed in the central part of each observed landslide
scarp. 119 (70%) out of those landslides are used for training and 51
(30%) are retained for the evaluation of the results obtained. Splitting
of the inventory follows a random procedure. No distinction between
different types of landslides is made in the present study.



Fig. 1. Location of the study area in the north-eastern part of Uzbekistan.
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2.2.2. Predictor layers
The thematic predictor layers for statistical landslide susceptibility

analyses are often selected according to the geomorphological charac-
teristics of the study area, the type of landslides and the method
employed (Tien Bui et al., 2013; Hong et al., 2017). There is still dis-
agreement whether to constrain the predictor layers to a small number
(Akgun, 2012), or to use a large number of layers (Catani et al., 2013;
Table 2
Sources of the thematic layers.

Base map or layers Thematic layer Source

DEM derived layers Elevation Worldview 1 stereo images (2 m),
ASTER DEM (30 m)Slope aspect

Slope degree
Geological map Geology Geological map of Uzbekistan 1:500,000

Distance to
lineaments
Distance to

faults
Distance to
streams

Soil map Soil Soil map of Uzbekistan 1:1,500,000
Topographic map Distance to

roads
Open street map

Land use and land
cover map

LULC GeoEye-1 (2 m), Landsat 8 OLI
Meinhardt et al., 2015). The second type of approach is followed in the
present study. Ten predictor layers are derived from the digital eleva-
tion model (DEM) as well as from the geological, soil, topographic,
and land use and land cover (LULC) maps, in order to be used for the
landslide susceptibility analysis. The layers are summarized in Table 2.

2.2.2.1. DEM derived layers. Elevation, slope and aspect are the most
commonly used DEM parameters for landslide susceptibility mapping
(Ercanoglu et al., 2004; Pourghasemi et al., 2012). For our study area,
the elevation varies from 738 to 182 m and is divided into six classes
with intervals of 200m(Fig. 2a). Aspect is related to thedirection of pre-
cipitation, wind and sunlight. It is classified into nine categories: flat,
north, northeast, east, southeast, south, southwest, west, northwest
(Fig. 2b). The slope values range between 0° and 62° and are grouped
into five classes (Fig. 2c).

2.2.2.2. Layers from the geological map. Geology plays a very important
role for landslide susceptibility studies because different lithological
classes vary among themselves in terms of mechanical and hydraulic
characteristics (Pourghasemi et al., 2013; Pourghasemi et al., 2018).
The study area is divided into two lithological units: quaternary with
an alluvial complex and carboniferous with a carbonate-terrigenous
complex. Most of the territory is assigned to the quaternary deposits in-
cluding sand, gravel, conglomerate and loess. The carbonate-
terrigenous complex consists of limestone and dolomite with a bed of
siltstone (Fig. 2d). Lineaments as linear features serve as indicators for
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potential tectonic activity (Meten et al., 2015; Teerarungsigul et al.,
2016). The distance to lineaments layer is classified into seven equidis-
tant categories, using an interval of 300 m (Fig. 2e). Faults are directly
Fig. 2. Predictor layers used for the landslide susceptibility mapping: (a) Elevation, (b) Slope
(g) Distance to streams, (h) Soil map, (i) Distance to roads, (j) Land use land cover.
related to the tectonic activity of the region and characterized by the
presence of weak and fractured rocks (Chen et al., 2016). The distance
to faults layer is divided into seven equidistant classes with intervals
aspect, (c) Slope degree, (d) Geology, (e) Distance to lineaments, (f) Distance to faults,



Fig. 2 (continued).
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Fig. 2 (continued).
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of 400m each (Fig. 2f). Further, bank erosion along water courses plays
an important role as a trigger of landslide processes (Park et al., 2013).
44 streamswith different lengths aremapped in the study area. The dis-
tance to streams layer is classified into eight categories with intervals of
300 m each (Fig. 2g).

2.2.2.3. Soil map. The soil cover on the steep slopes strongly influences
landslide occurrence (Sarkar and Kanungo, 2004; Shahabi and
Hashim, 2015). The soil map differentiates between three different
types of soil including eroded soils associated with outcrops of bedrock,
loamy mountain-forest soils and eroded soils on loess rocks (Fig. 2h).

2.2.2.4. Distance to roads. Previous studies suggest that the distance to
roadswould be an important anthropogenic factor influencing landslide
occurrence (Nourani et al., 2014). The roads are digitized from the topo-
graphic map, and the distance to the next road is derived for each raster
cell. The distance layer is then divided into eight classeswith intervals of
300 m each (Fig. 2i).

2.2.2.5. Land use and land cover. According to Constantin et al. (2011)
and Pourghasemi et al. (2018) land use and land cover (LULC) is the
most commonly used predictor layer after slope, lithology and aspect.
Indeed, LULC is a very important parameter with regard to slope stabil-
ity, even though it has to be considered with care as it may introduce a
bias to the results (Steger et al., 2017). The land use and land covermap
is classified into seven categories: grassland, forest, bareland, shrubland,
water body, agricultural land and settlements (Fig. 2j).

2.3. Methods

Various statistical approaches are available for landslide susceptibil-
ity mapping. Three of these methods are employed and compared
within the present study: statistical index (SI), certainty factor (CF)
and frequency ratio (FR). The accuracy assessment of the model results
is done using the areas under the success rate and prediction rate curves
(AUC).

The SI method is a bivariate statistical model proposed by Van
Westen et al. (1997). The calculation is based on the correlation of the
landslide inventory and the predictor layers. The value of each class is
defined as the natural logarithm of the landslide density in the class di-
vided by the landslide density of the study area:

Wij ¼ ln
Dij

D

� �
¼ ln

Nij

Sij
=
N
S

1
CCA�

0
BB@

2
664

where Wij is the weight given to a certain parameter class (e.g. a rock
type or a slope class), Dij is the landslide density within the parameter
class,D is the landslide densitywithin the entiremap,Nij is the landslide
area in a certain parameter class, Sij is the total area in a certain param-
eter class, N is the total number of the landslide pixels in the study area,
and S is the total number of pixels of the study area.

Also the CF method is widely used for landslide susceptibility map-
ping (Lan et al., 2004):

CF ¼
PPa−PPs

PPa 1−PPsð Þ if PPa≥PPs
PPa−PPs

PPs 1−PPað Þ if PPabPPs

8>><
>>:

where PPa is the conditional probability of the landslide event in class a
and PPs is the prior probability of the total number of landslide events
occurring in the area. The CF valuemay vary from−1 to 1. Those values
closer to 1 indicate a high certainty of landslide occurrence whereas



Table 3
Spatial relation between thematic layers and landslides using SI, CF and FR methods.

Factor Class Class pixels Slide pixels Class pixels % Slide pixels % SI CF FR

LULC Grassland 623,538 2999 43.59 48.22 0.10 0.09 1.11
Forest 517,177 2664 36.15 42.83 0.17 0.15 1.18

Bareland 36,389 265 2.54 4.26 0.51 0.40 1.67
Shrubland 31,238 284 2.18 4.57 0.73 0.52 2.09
Waterbody 5710 0 0.40 0.00 0.00 −1.00 0.00

Agricultural land 160,702 8 11.23 0.13 −4.47 −0.99 0.01
Settlements 55,713 0 3.89 0.00 0.00 −1.00 0.00

Geology C1–2 84,203 71 5.88 1.14 −1.64 −0.81 0.19
Q III–IV 1,347,230 6149 94.12 98.86 0.05 0.04 1.05

Soil 1 343,231 889 23.97 14.29 −0.52 −0.41 0.60
2 588,508 3516 41.10 56.53 0.31 0.27 1.38
3 500,223 1815 34.93 29.18 −0.18 −0.17 0.84

Elevation 738–800 7074 0 0.50 0.00 0.00 −1.00 0.00
800–1000 293,985 998 20.60 16.03 −0.25 −0.22 0.78
1000–1200 503,422 1783 35.28 28.65 −0.21 −0.19 0.81
1200–1400 446,522 2843 31.29 45.68 0.38 0.31 1.46
1400–1600 160,163 583 11.22 9.37 −0.18 −0.16 0.83
1600–1829 15,697 17 1.10 0.27 −1.39 −0.75 0.25

Aspect Flat 164,855 642 11.55 10.32 −0.11 −0.11 0.89
North 168,448 659 11.81 10.59 −0.11 −0.11 0.90

Northeast 94,694 654 6.64 10.51 0.46 0.37 1.58
East 257,271 1795 18.03 28.86 0.47 0.37 1.60

Southeast 76,230 792 5.34 12.73 0.87 0.58 2.38
South 199,563 418 13.99 6.72 −0.73 −0.52 0.48

Southwest 85,513 201 5.99 3.23 −0.62 −0.46 0.54
West 252,155 226 17.67 3.63 −1.58 −0.79 0.21

Northwest 85,548 672 6.00 10.80 0.59 0.44 1.80
Northeast 42,586 161 2.98 2.59 −0.14 −0.13 0.87

Slope 1 325,607 496 22.81 7.97 −1.05 −0.65 0.35
2 647,830 2106 45.38 33.86 −0.29 −0.25 0.75
3 418,143 3149 29.29 50.63 0.55 0.42 1.73
4 32,852 441 2.30 7.09 1.12 0.67 3.08
5 3090 28 0.22 0.45 0.73 0.52 2.08

Distance to lineaments 300 176,158 820 12.31 13.18 0.06 0.06 1.07
600 195,500 1515 13.66 24.36 0.57 0.44 1.78
900 209,595 1131 14.65 18.18 0.21 0.19 1.24
1200 201,533 1208 14.08 19.42 0.32 0.27 1.38
1500 176,430 103 12.33 1.66 −2.01 −0.87 0.13
1800 137,282 127 9.59 2.04 −1.55 −0.79 0.21

Distance to faults 400 200,619 413 12.31 13.18 −0.75 −0.53 1.07
800 176,496 574 13.66 24.36 −0.29 −0.25 1.78
1200 144,867 985 14.65 18.18 0.44 0.36 1.24
1600 109,299 453 14.08 19.42 −0.05 −0.05 1.38
2000 98,704 745 12.33 1.66 0.55 0.42 0.13
2400 96,885 430 9.59 2.04 0.02 0.02 0.21
9000 604,420 2620 23.38 21.16 −0.01 −0.01 0.91

Distance to streams 300 377,667 930 26.39 14.95 −0.57 −0.43 0.57
600 341,322 1081 23.85 17.38 −0.32 −0.27 0.73
900 257,924 2016 18.02 32.41 0.58 0.44 1.80
1200 195,378 1194 13.65 19.20 0.34 0.28 1.41
1500 121,960 199 8.52 3.20 −0.98 −0.62 0.38
2000 93,981 621 6.57 9.98 0.42 0.34 1.52
3000 39,736 179 2.78 2.88 0.03 0.03 1.04
8000 3322 0 0.23 0.00 0.00 −1.00 0.00

Distance to roads 300 338,747 212 23.67 3.41 −1.94 −0.86 0.14
600 255,531 525 17.85 8.44 −0.75 −0.53 0.47
900 187,003 655 13.07 10.53 −0.22 −0.20 0.81
1200 140,898 2208 9.84 35.50 1.28 0.72 3.61
1500 114,732 705 8.02 11.33 0.34 0.29 1.41
2000 152,052 1318 10.62 21.19 0.69 0.49 1.99
3000 175,082 597 12.23 9.60 −0.25 −0.22 0.78
9000 67,245 0 4.70 0.00 0.00 −1.00 0.00
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those values closer to−1 show a low certainty of landslide occurrence.
The CF values are incorporated pair wise by using the following combi-
nation rule:

Z ¼
CF1þ CF2−CF1CF2 CF1;CF2≥0
CF1þ CF2þ CF1CF2 CF1;CF2b0

CF1þ CF2
1− min CF1j j; CF2j jð Þ CF1 � CF2b0

8>><
>>:
According to Pourghasemi et al. (2018), the FR method is the most
utilized approach for landslide susceptibility mapping after logistic re-
gression. As a bivariate statistical method, the FR approach shows the
correlation between the landslides and each single predictor layer
(Lee and Pradhan, 2007). The landslide susceptibility index is derived
by summarizing all layer-specific factor values:

LSI ¼
X

FR



Fig. 3. Landslide susceptibility map derived using the statistical index (SI) method.

Fig. 4.Weight factors of predictor layers for the statistical index (SI) method.
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3. Results

3.1. Landslide susceptibility mapping using the SI method

The spatial relationships between the predictor layers and the land-
slide inventory for the SI method are shown in Table 3. The final suscep-
tibility map is divided into five classes based on the natural breaks
method: very low, low, moderate, high, and very high (Fig. 3). The
weights associated to each class of each predictor layer vary over a
broad range (Fig. 4). Among the LULC predictor layer classes, bareland
and shrubland have the highest weight factors of 0.51 and 0.73 respec-
tively, indicating that these two classes aremost susceptible to landslide
occurrence. The alluvial complex covered by loess deposits shows the
highest weight factor (0.05) among the geological units. Among the
soil classes, loamymountain-forest soils show the highest susceptibility
(weight factor of 0.31), whereas the lowest value is derived for eroded
soils associated with outcrops of bedrock (−0.52). Also the DEM-
derived layers play an important role for landslide susceptibility,
whereby the elevation class from 1200 to 1400 m shows the highest
weight factor (0.38) and the lowest value is derived for the elevation
class above 1600 m. East, northwest and southeast facing slopes are
most susceptible among the aspect classes (0.47, 0.59 and 0.87, respec-
tively). The weight factor for the slope increases from 20°–35°onwards
and reaches itsmaximumvalue of 1.12 in the class 35°–45°. Considering
the distance to lineaments layer, the range between 300 and 600m has
the highest weight factor (0.57), whereas the most susceptible class of
the distance to faults layer corresponds to the range 800–1200 m
(0.44). The highest SI value for the distance to streams layer is com-
puted for the class 600–900 m. The most susceptible class from the dis-
tance to roads layer belongs to the range between 900 and 1200m. The
percentage of the classes very low, low, moderate, high and very high of
the susceptibility map computed with the statistical index method are
11.64, 20.41, 24.58, 35.61 and 7.76%, respectively (Fig. 5).

3.2. Landslide susceptibility mapping using the CF method

The spatial relationships between the predictor layers and the land-
slide inventory for theCFmethod are shown in Table 3. Thefinal suscep-
tibility map derived with the CF method was divided into five classes
using natural breaks (Fig. 6). The LULC layer has the highest values for
the classes bareland and shrubland (0.40, 0.52 respectively), indicating
that these two classes are most susceptible to landslide occurrence. The
alluvial complex covered by loess deposits shows the highest weight
factor (0.04) among the geological units. Among the soil units, loamy
Fig. 5. The percentage of the different susceptibility classes for the statistic
mountain-forest soils have a value of 0.27: they represent themost sus-
ceptible class derived from the soil map layer. The elevation class from
1200 to 1400 m shows the highest weight factor (0.31), whereas the
lowest value is derived for the elevation class up to 800 m (Fig. 7). The
northeast, east, southeast and northwest facing slopes show values of
0.37, 0.37, 0.58 and 0.44 respectively. For the slope layer the susceptibil-
ity increases from 20° to 65°. The class 300–600 m shows the highest
degree of susceptibility (0.44)with regard to the distance to lineaments.
The class from 800 to 1200m ismost susceptible with regard to the dis-
tance to faults, the class from 600 to 900 m with regard to the distance
to streams, and the class from900 to 1200mwith regard to the distance
to roads. The percentage of the classes showing very low, low, moder-
ate, high and very high landslide susceptibility are 11.04, 25.95, 26.67,
30.10, and 6.25%, respectively (Fig. 5).

3.3. Landslide susceptibility mapping using the FR method

The spatial relationships between the predictor layers and the land-
slide inventory for the FR method are shown in Table 3. For the FR
method values b1 show a low susceptibility and N1 a high susceptibility
to landslides. The final susceptibilitymap derivedwith the FRmethod is
divided into five classes using natural breaks (Fig. 8). Among the LULC
predictor layer grassland, shrubland and bareland are most susceptible
to landslide occurrence, with values of 1.11, 2.09 and 1.67, respectively.
The lowest values are associated to the classes of water bodies and set-
tlements. Among the geological units the alluvial complex has a weight
of 1.05 and it is the most susceptible class. Among the soil classes the
loamy mountain-forest soils have the highest susceptibility value
(1.38), the lowest value falls on eroded soils among the outcrops of bed-
rock (0.60) (Fig. 9). Considering the elevation classes, the range be-
tween 1200 and 1400 m shows the highest susceptibility (1.46). The
northeast, east, southeast, and northwest facing slopes aremost suscep-
tiblewith regard to slope aspect (1.58, 1.60, 2.38, and 1.80 respectively).
The weight factor for the slope increases from 20°–35° to 35°–45°
(values of 1.73 and 3.08, respectively) and decreases for the class 45°–
62° (2.08). Considering the distance to lineaments layer, the first four
classes have values above 1. Also the first four classes of the distance
to faults layer show the highest susceptibilities to landslide occurrence,
and so do the ranges between 600 and 1200 m of the distance to
streams layer (values of 1.80 and 1.41, respectively). For the layer dis-
tance to roads, the highest values are displayed for the classes
900–1200 m, 1200–1500 m, and 1500–2000 m, with values of 3.61,
1.41, and 1.99, respectively. The percentages of the classes very low,
low, moderate, high, and very high throughout the entire landslide
al index (SI), frequency ratio (FR) and certainty factor (CF) methods.



Fig. 6. Landslide susceptibility map derived using the certainty factor (CF) method.
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susceptibilitymap are 19.40, 30.62, 24.05, 18.84, and 7.09%, respectively
(Fig. 5).

3.4. Evaluation against the landslide inventory

The success rates of the SI, FR and CF methods are shown in Fig. 10.
TheAUC value for the SImethod is 0.821, corresponding to a training ac-
curacy of 82.1%. The AUC value for the CF method is 0.743, correspond-
ing to a training accuracy of 74.3%. For the FR method an AUC value of
0.74, corresponding to a training accuracy of 74%, is obtained. The pre-
diction rates associated to the SI, CF and FR methods are summarized
in Fig. 11: the AUC value obtainedwith the SI method is 0.8 and the pre-
diction accuracy is, consequently, 80%. The AUC value for the CFmethod
is 0.7 and the prediction accuracy is 70%. For the FR method the AUC
value is 0.71 and the prediction accuracy is 71%. These evaluation results
reveal that the FR andCFmethods perform in a similarway for our study
area, whereas the SI method yields the best result in terms of empirical
adequacy.

4. Discussion

Landslide susceptibility mapping is important for visualizing poten-
tially landslide-prone areas in hilly andmountainous terrain (Dou et al.,
2015a, 2015b). Several authors have performed statistical landslide
susceptibility analyses for various areas worldwide. Wu et al. (2016),
for example, applied the SI, FR, and CFmethods for a landslide suscepti-
bility assessment for the Gangu County, China. They used 12 predictor
layers and a point-based landslide inventory with a cell size of
30x30m. The AUC method was used for the evaluation of the models,
yielding accuracies of the three methods around 75%. Zhao et al.
(2015) applied the SI and CFmethods to analyze landslide susceptibility
in the Shangzhou district, Shaanxi province, China. They mapped 145
landslide locations as points using a cell size of 50x50m. The AUC
method revealed accuracies of the applied methods between 68 and
70%.

Preliminary knowledge about the predictor layers conditioning the
spatial patterns of landslide occurrence is desired (Guzzetti et al.,
1999). Landslide susceptibility analyses require several types of input
data. The selection of the appropriate predictor layers depends on a va-
riety of factors such as study area scale and pattern, type of landslide
processes, and data availability and quality (Manzo et al., 2013; Tien
Bui et al., 2016). Hence, the number of predictor layers can vary, de-
pending on the study area. According to Pourghasemi et al. (2018),
the predictor layers selected for the current study are in general the
most used layers for landslide susceptibility analysis. Some of the
landslide-predictor relationships are now discussed in more detail: all
three methods applied reveal that the bareland and shrubland classes
from the LULC layer are most susceptible to landslides. So is loose



Fig. 7.Weight factors of predictor layers for the certainty factor method.
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material from the quaternary alluvial complex. Further, a decrease of
landslide susceptibility with elevation is observed (Zare et al., 2013).
This can be explained by the fact that hard bedrock often prevails at
high elevation (Mohammady et al., 2012). For our study area the eleva-
tion range between 1200 and 1400mdisplays the highest landslide sus-
ceptibility for all three methods, whereas the susceptibility decreases
Fig. 8. Landslide susceptibility map derived
above this range. Due to increasing shear stress with increasing slope,
slopes between 35° and 45° show the highest susceptibility for all
three methods. Steeper slopes mostly occur in bedrock. Among the
slope aspect layer classes, the highest susceptibility values are associ-
ated to southeast facing slopes due to the general orientation of the geo-
logical layers. The patterns of landslide susceptibility with regard to
using the frequency ratio (FR) method.



Fig. 9. Weight factors of predictor layers for the frequency ratio method.
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each predictor layer are largely similar for all three methods employed,
and many findings of earlier studies could be confirmed, indicating a
certain robustness of the results.

Also the derived AUC results are promising. The maximum accuracy
(82%) was achieved with the SI method. It is higher than the accuracies
yielded in many other studies (Regmi et al., 2014; Dou et al., 2015a,
2015b; Zhao et al., 2015; Cui et al., 2017; Vakhshoori and Zare, 2016;
Hong et al., 2016) which commonly arrived at accuracies between 70%
and 80%. We may assume that this higher accuracy is a result of using
a polygon-based instead of a point-based inventory, as it was done in
most earlier studies. However, more research is necessary to confirm
this hypothesis. In general, the benefit of using polygon-based landslide
inventories depends on landslide size and geometry (Zêzere et al.,
2017).

The at least 18% of the observed landslide distribution not explained
by the models are most probably the result of a combination of
(i) uncertainties in the spatial patterns of the predictor layers; (ii) influ-
ence of additional factors not considered in the present work; (iii) posi-
tional errors (Steger et al., 2016) or incompleteness (Steger et al., 2017)
of the mapped landslides; and (iv) mistakes in the interpretation of the
satellite images.
Fig. 10. Success rate curves of the landslide susceptibility maps for the statis
The study area is seismically active and the precipitation is higher
than it is reported for adjacent regions. However, there are no high-
resolution precipitation and seismic data available for the 177 km2

large study area. Extending the landslide susceptibility mapping to
larger areas could profit from the availability of precipitation and seis-
mic data, as these layers can be crucial for the spatial patterns of land-
slide susceptibility, and their inclusion may therefore improve the
quality of the results.

5. Conclusions

The active seismicity and the high amount of precipitation make the
Bostanlik district highly susceptible to landslide processes. The selection
of methods and predictor layers used for the landslide susceptibility
mapping conducted in the present study builds on the available data
and on the study area size. The three statistical methods statistical
index (SI), frequency ratio (FR) and certainty factor (CF) were selected
for the landslide susceptibility mapping, relating a set of ten predictor
layers to a landslide inventory. The three landslide susceptibility maps
were split into five classes, i.e. very low, low, moderate, high, very
high, based on natural breaks. The model performance was analyzed
tical index (SI), frequency ratio (FR) and certainty factor (CF) methods.



Fig. 11. Prediction rate curves of the landslide susceptibility maps for the statistical index (SI), frequency ratio (FR) and certainty factor (CF) methods.
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using the area under curve (AUC). The AUC plots showed that the train-
ing accuracies were 82.1%, 74.3% and 74%, whereas the prediction accu-
racies were 80%, 70% and 71%, for the SI, FR and CF methods,
respectively. The FR and CF methods performed in a similar way
whereas the SI method yielded the highest accuracy among all the
methods applied. The relationships between the landslide inventory
and the predictor layers largely confirmed the results of previous stud-
ies. Model performancewas slightly higher than in some previous stud-
ies using the samemethods for other areas, which is possibly a result of
using a polygon-based landslide inventory derived from high-
resolution satellite imagery. Further research is necessary to clarify the
influence of the typeof landslide inventory on theperformance of statis-
tical landslide susceptibility analyses. In the future, landslide suscepti-
bility mapping will be extended to larger areas with the cooperation
of local, regional and national authorities, who need the results for pri-
oritizing areas requiring further attention.
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