
Chapter 13
Time-Independent Nonlinear Schrödinger
Equation on Simplest Networks

Karimjon Sabirov, Zarif Sabirov, Donyor Babajanov, and Davron Matrasulov

Abstract We treat the time-independent (cubic) nonlinear Schrödinger equation
(NLSE) on simplest networks. In particular, the solutions are obtained for star
and tree graphs with the boundary conditions providing vertex matching and flux
conservation. It is shown that the method can be extended to the case of arbitrary
number of bonds in star graphs and for other simplest topologies.

13.1 Introduction

The nonlinear evolution equations were the topic of extensive research during the
last half century. Special attention among others has attracted nonlinear Schrodinger
equation whose detailed treatment started in the pioneering studies by Zakharov and
Shabat in early seventies of the last century [1–3]. Such an interest is mainly caused
by the possibility for obtaining soliton solution of NLSE and its various practical
applications in different branches of physics. Initially, the applications of NLSE and
other nonlinear evolution equations having soliton solutions were mainly focussed
in optics, acoustics, particle physics, hydrodynamics and biophysics. However,
special attention NLSE and its soliton solutions have attracted because of the recent
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progress made in the physics and Bose-Einstein condensates (BEC). Namely, due
to the fact that the dynamics of BEC is governed by Gross-Pitaevski equation
which is NLSE with cubic nonlinearity, finding the soliton solution of NLSE with
different confining potentials and boundary conditions is of importance for this area
of physics.

During the last few decades NLSE and its soliton solutions have been treated in
the context of fiber optics, photonic crystals, acoustics BEC and other topics (see
books [4–8] and references therein). Both, stationary and time-dependent NLSE
were extensively studied for different trapping potentials in the context of BEC. In
particular, the stationary NLSE was studied for box boundary conditions [9,10] and
the square well potential [11–14].

In this work we explore the time-independent NLSE on networks by modeling
the latter by graphs. Graphs are the systems consisting of bonds which are connected
at the vertices [15]. The bonds are connected according to a rule that is called
topology of a graph. Topology of a graph is given in terms of so-called adjacency
matrix which can be written as [16, 17]:

Ci j =Cji =

{
1 if i and j are connected,
0 otherwise,

i, j = 1,2, . . . ,V.

Earlier, the linear Schrödinger equation on graphs was treated in different con-
texts (e.g., see reviews [16–18] and references therein). In this case the eigenvalue
problem is given in terms of the boundary conditions providing continuity and
current conservation [16–22].

Despite the progress made in the study of the linear Schrödinger equation on
graphs, corresponding nonlinear problem, i.e., NLSE on graphs is still remaining
as less-studied topic. This is mainly caused by difficulties that appear in the case
of NLSE on graphs, especially, for the time-dependent problem. In particular, the
problem becomes rather nontrivial and it is not so easy to derive conservation
laws [28]. However, during the last couple of years there were some attempts to
treat time-dependent [28, 29] and the stationary [30, 32] NLSE on graphs. Soliton
solutions and connection formulae are derived for simple graphs in the Ref. [28].
The problem of fast solitons on star graphs is treated in the Ref. [29]. In particular,
the estimates for the transmission and reflection coefficients are obtained in the limit
of very high velocities. The problem of soliton transmission and reflection is studied
in [30] by solving numerically the stationary NLSE on graphs.

In [31] dispersion relations for linear and nonlinear Schrödinger equations on
networks are discussed. More recent treatment of the stationary NLSE in the context
of scattering from nonlinear networks can be found in the Ref. [32]. In particular,
the authors discuss transmission through a complex network of nonlinear one-
dimensional leads and found the existence of the high number of sharp resonances
dominating in the scattering process. The stationary NLSE with power focusing
nonlinearity on star graphs was studied in very recent paper [33], where existence
of the nonlinear stationary states are shown for δ−type boundary conditions. In
particular, the authors of [33] considered a star graph with N semi-infinite bonds,
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for which they obtain the exact solutions for the boundary conditions with α �= 0.
The properties of the ground state wave function are also studied by considering
separately the cases of odd and even N. In this work we treat NLSE on simplest
graphs with finite-length bonds, aiming at obtaining its exact solutions for some
types of the boundary conditions.

An important applications of NLSE on networks is Bose-Einstein condensation
(BEC) and transport of BEC in networks. This issue has been extensively discussed
recently in the literature [24–27]. We note that networks can be used as the traps for
BEC experiments.

It is important to notice that earlier the problem of soliton transport in discrete
structures and networks was mainly studied within the discrete NLSE [23]. How-
ever, such an approach doesn’t provide comprehensive treatment of the problem
and one needs to use continuous NLSE on graphs. The aim of this work is the
formulation and solution of stationary NLSE on simplest graphs such as star, tree
and loop which can be considered as exactly solvable topologies.

13.2 Time-Independent NLSE on Primary Star Graph

The problem we want to treat is the stationary (time-independent) NLSE with cubic
nonlinearity on the primary star graph. The star graph is a three or more bonds
connected to one vertex (branching point). The primary star graph consisting of
three bonds, b1, b2, b3, is plotted in Fig. 13.1. The coordinate, x1 on the bond b1

varies from 0 to L1, while for the bonds bk,k = 2,3 the coordinates, xk, vary from
L1 to Lk. At the branching point we have xk = L1. In the following we will use
the notation x instead of xk, (k = 1,2,3). Then the time-independent NLSE can be
written for each bond as

−ψ ′′
j ±β j|ψ j|2ψ j = λ 2ψ j, β j > 0, j = 1,2,3. (13.1)

Eq. (13.1) is a multi-component equation in which components are mixed through
the boundary conditions and conservation laws. More detail analysis of the bound-
ary conditions on graphs can be found in the Refs. [19, 22].

In this paper we will consider the following boundary conditions:

Fig. 13.1 Primary star graph
consisting of three bonds
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ψ1(L1) = A2ψ2(L1) = A3ψ3(L1),[
∂
∂x ψ1(x)− 1

A∗
2

∂
∂x ψ2(x)− 1

A∗
3

∂
∂x ψ3(x)

]
|x=L1 = αψ1(L1), A2A3 �= 0.

The first boundary condition is matching condition and becomes continuity in
special case A2 = A3 = 1, while second condition in this special case coincides with
current conservation (α is assumed to be real) considered, for example, in the Refs.
[16, 17]. We note that the eigenvalues of the linear Schrodinger equation on graphs
can be found by solving a linear algebraic system following from the boundary
conditions [16]. However, as we will see in the next section, for the stationary NLSE
on graphs the boundary conditions lead to a system of transcendental equations and
one should show the existence of its roots.

Consider the following time-independent NLSE with repulsive nonlinearity

−ψ ′′
j +β j|ψ j|2ψ j = λ 2ψ j, β j > 0, j = 1,2,3. (13.2)

given on the primary star graph presented in Fig. 13.1. The boundary conditions are
given as (λ is real; A2 =

√
β2/β1, A3 =

√
β3/β1, α = 0):

ψ1(x)|x=0 = 0, ψ2(x)|x=L2 = ψ3(x)|x=L3 = 0, (13.3)
√

β1ψ1(L1) =
√

β2ψ2(L1) =
√

β3ψ3(L1), (13.4)[
1√
β1

∂
∂x ψ1(x)− 1√

β2

∂
∂x ψ2(x)− 1√

β3

∂
∂x ψ3(x)

]
|x=L1 = 0, (13.5)

and the wave function is normalized as follows:

3

∑
j=1

∫
b j

|ψ j(x)|2dx = 1. (13.6)

Dirichlet type boundary conditions are chosen in Eq. (13.3) due to their simplicity
and their direct relevance to physical systems. It is easy to realize such conditions
in physical systems than other ones.

The solution of Eq. (13.2) can be written as

ψ j(x) = f j(x)e
iγ j , j = 1,2,3, (13.7)

where γ j = const, f j(x) is a real function obeying the equation

− f ′′j +β j f 3
j = λ 2 f j. (13.8)

The following relations can be obtained from the boundary conditions given by
Eq. (13.4)

eiγ1
√

β1 f1(L1) = eiγ2
√

β2 f2(L1) = eiγ3
√

β3 f3(L1),
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which lead to

γ1 = γ2 = γ3 = γ,√
β1 f1(L1) =

√
β2 f2(L1) =

√
β3 f3(L1).

It is clear that the functions f1, f2, f3 should obey Eqs. (13.3), (13.4), (13.5), and
(13.6).

Exact solutions of Eq. (13.8) for finite interval and periodic boundary conditions
can be found in the Refs. [9, 10]. Here we consider this problem for the graph
boundary conditions given by Eq. (13.3). Solution of Eq. (13.8) satisfying these
boundary conditions can be written as

f1(x) = B1sn(α1x|k1) ,

f2(x) = B2sn(α2(x−L2)|k2) ,

f3(x) = B3sn(α3(x−L3)|k3) ,

where sn(ax|k) are the Jacobian elliptic functions [34].
Inserting the last equation into Eq. (13.8) and comparing the coefficients of

similar terms we have

B j = σ j

√
2
β j

α jk j, λ 2 = α2
j

(
1+ k2

j

)
, j = 1,2,3, (13.9)

where σ j =±1 j = 1,2,3.
Using Eqs. (13.4), (13.5), and (13.6) and the relations [34]

∫ b

a
sn2 (α(x− c)|k)dx =

1
k2

∫ b

a

[
1− dn2 (α(x− c)|k)]dx

=
1
k2 (b− a)− 1

αk2 E [am(α(b− c)) |k]+ 1
αk2 E [am(α(a− c)) |k] ,

we obtain the system of transcendental equations with respect to α j and k j

( j = 1,2,3), which gives us the spectrum of the eigenvalues stationary NLSE on
primary star graph:

√
β1B1sn(α1L1|k1) =

=
√

β2B2sn(α2(L1 −L2)|k2)

=
√

β3B3sn(α3(L1 −L3)|k3) , (13.10)

B1α1√
β1

cn(α1L1|k1)dn(α1L1|k1)− B2α2√
β2

cn(α2(L1 −L2)|k2)dn(α2(L1 −L2)|k2)

−B3α3√
β3

cn(α3(L1 −L3)|k3)dn(α3(L1 −L3)|k3) = 0, (13.11)
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B2
1

k2
1

L1 +
B2

2

k2
2

(L2 −L1)+
B2

3

k2
3

(L3 −L1) =

= 1+
B2

1

k2
1α1

E [am(α1L1|k1)|k1]+
B2

2

k2
2α2

E [am(α2(L2 −L1)|k2)|k2]+

+
B2

3

k2
3α3

E [am(α3(L3 −L1)|k3)|k3] . (13.12)

Here E(ϕ |k) and am(u|k) are the incomplete elliptic integral of the second kind and
the Jacobi amplitude, respectively.

In general case this system can be solved using the different (e.g., Newton’s or
Krylov’s method) iteration schemes. However, below we will show solvability of
this system for two special cases.
Let

4n1 + 1
L1

=
4n2 + 1
L2 −L1

=
4n3 + 1
L3 −L1

,

where n1,n2,n3 ∈ N∪{0}.
Choosing

α1 =
4n1 + 1

L1
K(k1), α2 =

4n2 + 1
L2 −L1

K(k2), α3 =
4n3 + 1
L3 −L1

K(k3),

we have

α1 = α2 = α3 = α, k1 = k2 = k3 = k, σ1 = 1, σ2 = σ3 =−1.

Here K(k) is the complete elliptic integral of the first kind.
It is clear that Eqs. (13.10) and (13.11) are valid under these conditions. Using

Eq. (13.12) and the relations

am(u+ 2K(k)|k) = π + am(u|k),

E(nπ ±ϕ |k) = 2nE(k)±E(ϕ |k),
we have

g(k)≡ 2
(4n1 + 1)2

L2
1

(
L1

β1
+

L2 −L1

β2
+

L3 −L1

β3

)
K(k)(K(k)−E(k))− 1 = 0.

(13.13)
Solvability of Eq. (13.13) is equivalent to that of NLSE on primary star graph.

Therefore we will prove solvability of this equation. Indeed, it follows from the
relations

lim
k→0

g(k) =−1, lim
k→1

g(k) = +∞,

and from the fact that g(k) is a continuous function of k on the interval (0;1), that
Eq. (13.13) has a root.
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Now we consider another special case given by the relations

α1 =
(−1)n1 p+ 2n1K(k1)

L1
, α2 =

(−1)n2 p+ 2n2K(k2)

L2 −L1
, α3 =

(−1)n3 p+ 2n3K(k3)

L3 −L1
,

where −K(k j) ≤ p ≤ K(k j), n j ∈ N, j = 1,2,3 and n1,n2,n3 cannot be odd or
even at the same time and show existence of the solution of the system given by
Eqs. (13.10), (13.11), and (13.12). From Eqs. (13.9) and (13.10) we obtain

α1 = α2 = α3 = α, k1 = k2 = k3 = k, σ1 = 1, σ2 = σ3 =−1.

From Eq. (13.11) we have

(−1)n1

β1
+

(−1)n2

β2
+

(−1)n3

β3
= 0.

Furthermore, it follows from the last equation and Eq. (13.12) that

g(k)≡ 4

(
(−1)n1 p+ 2n1K(k1)

L1

)(
n1

β1
+

n2

β2
+

n3

β3

)
(K(k)−E(k))− 1 = 0.

(13.14)
Therefore we have

lim
k→0

g(k) =−1, lim
k→1

g(k) = +∞.

Since g(k) is a continuous function of k on the interval (0;1), it follows from
the last relations that Eq. (13.14) has a root. Unlike the first special case, the second
case describes primary star graph, with connected bonds.

13.3 Other Simplest Graphs

To extend the above approach to the case of other topologies, we consider a simplest
topology, tree graph plotted in Fig. 13.2. Such an extension can be done using the
same approach as that in the Ref. [28].

We seek the solution of Eq. (13.8) on the each bonds in the form

fb = Bbsn(αbx+ δb |kb ) ,

where δb are parameters that can be determined by the given boundary conditions:
δ1 = 0, δ1i j =−α1i jL1i j.

Let us assume that the following relations are valid:

4n1 + 1
L1

=
4(n(2)1i − n(1)1i )

L1i −L1
=

4n1i j + 1
L1i j −L1i

, i = 1,2, j = 1,2,3
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Fig. 13.2 Tree graph

where n1,n1i,n1i j ∈ N∪{0},n(2)1i > n(1)1i and

α1 =
4n1 + 1

L1
K(k1), α1i =

4(n(2)1i − n(1)1i )

L1i −L1
K(k1i),

α1i j =
4n1i j + 1
L1i j −L1i

K(k1i j), δ1i =

(
4(n(1)1i L1i − n(2)1i L1)

L1i −L1
+ 1

)
K(k1i).

Then it is easy to show that these relations lead to equations

α1 = α1i = α1i j = α, k1 = k1i = k1i j = k, σ1 = σ1i = 1, σ1i j =−1.

Therefore we have

g(k) ≡ 2
(4n1 + 1)2

L2
1

{
L1

β1
+

2

∑
i=1

[
L1i −L1

β1i
+

3

∑
j=1

L1i j −L1i

β1i j

]}
K(k)

×(K(k)−E(k))− 1 = 0. (13.15)

Solvability of the last equation is obvious.
Consider also the case given by the relations

α1 =
−(−1)n1 p1 + 2n1K(k1)

L1
,

α1i =
(−1)n

(2)
1i p1i − (−1)n

(1)
1i p1 + 2(n(2)1i − n(1)1i )K(k1i)

L1i −L1
,

α1i j =
−(−1)n1i j p1i + 2n1i jK(k1i j)

L1i j −L1i
,

δ1i =
(−1)n

(1)
1i p1L1i − (−1)n

(2)
1i p1iL1 + 2(n(1)1i L1i − n(2)1i L1)K(k1i)

L1i −L1
.

where −K(k1,1i)< p1 < K(k1,1i), −K(k1i,1i j)< p1i < K(k1i,1i j).
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One can obtain from the vertex conditions

α1 = α1i = α1i j = α, k1 = k1i = k1i j = k

and
(−1)n1

β1
−

2

∑
i=1

(−1)n(1)1i

β1i
= 0,

(−1)n(2)1i

β1
+

3

∑
j=1

(−1)n1i j

β1i j
= 0.

It follows from the normalization condition that

g(k)≡ 4

(
(−1)n1 p+ 2n1K(k)

L1

)
·

·
(

n1

β1
+

2

∑
i=1

[
n(2)1i − n(1)1i

β1i
+

3

∑
j=1

n1i j

β1i j

])
(K(k)−E(k))− 1 = 0.

Solvability of the last equation follows from the properties of the function g(k).
The same prescription can be repeated for loop graphs and combinations of loop
and star graphs that give us similar treatment for these topologies.

13.4 Conclusions

We have studied time-independent NLSE with cubic nonlinearity for simplest
networks and obtained explicit solutions for primary star and tree graphs are
obtained by considering matching and flux conservation boundary conditions.
Unlike the previous studies [28, 29, 32], the lengths of the bonds are considered
as finite. Therefore our work can be considered as an extension of the earlier results
by L.D. Carr et al. [9, 10, 12] to the case of networks. The method can be extended
to other simplest graph topologies and their combinations.
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