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Dynamics of inertial vortices in multicomponent Bose-Einstein condensates
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With use of the nonlinear Schrödinger (or Gross-Pitaevskii) equation with strong repulsive cubic nonlinearity,
dynamics of multicomponent Bose-Einstein condensates (BECs) with a harmonic trap in two dimensions is
investigated beyond the Thomas-Fermi regime. In the case when each component has a single vortex, we obtain
an effective nonlinear dynamics for vortex cores (particles). The particles here acquire the inertia, in marked
contrast to the standard theory of point vortices widely known in the usual hydrodynamics. The effective dynamics
is equivalent to that of charged particles under a strong spring force and in the presence of Lorentz force with
the uniform magnetic field. The interparticle (vortex-vortex) interaction is singularly repulsive and short ranged
with its magnitude decreasing with increasing distance of the center of mass from the trapping center. “Chaos
in the three-body problem” in the three-vortice system can be seen, which is not expected in the corresponding
point vortices without inertia in two dimensions.

DOI: 10.1103/PhysRevA.86.053613 PACS number(s): 03.75.−b, 05.45.−a, 05.60.Gg

I. INTRODUCTION

Recently, there has been much interest in theoretical and
experimental studies on trapped atomic Bose-Einstein conden-
sates (BECs) [1–3]. The superfluid property of atomic BECs
arises from a dual aspect of waves and particles (i.e., matter
waves), and is theoretically described by the macroscopic wave
function. Because of the nonlinearity of the system caused by
interaction between particles, the macroscopic wave function
can take a form of various solitons such as bright, dark, gray,
and vortex solitons, and these solitons are experimentally
observed in BECs.

As for bright solitons, Martin et al. [4] theoretically
predicted that the particlelike behavior of three bright solitons
in a one-dimensional 87Rb BEC was nonintegrable and showed
its change from regular motions to chaos. Pérez-Garcı́a et al.
[5] applied a variational method to dynamics of bright solitons
in a two-dimensional (2D) BEC and showed that the center
of mass of each soliton obeys Newtonian dynamics and
Ehrenfest’s theorem is valid if the phase of the BEC wave
function will be suitably chosen.

As more interesting systems, we can consider solitons in
multicomponent BECs which consist of different kinds of
atoms or the same kind of atoms having different spin and
that have been experimentally realized. In multicomponent
BECs, there is not only intracomponent particle interaction
but also intercomponent particle interaction which is another
origin of nonlinearity, so we expect novel soliton dynamics
which is not seen in single-component BECs. Yamasaki
et al. [6] developed a variational method to describe bright
soliton dynamics in 2D multicomponent BECs, and proposed
a model of conservative chaos. In 2D and three-dimensional
(3D) systems, however, bright solitons are unstable unless
intracomponent interaction oscillates between attraction and
repulsion or coexisting intracomponent quintic (three-body)
interaction is strong enough.

On the other hand, topological vortices known as quantized
vortices (i.e., topological defects of the macroscopic wave
function can be stable in two dimensions). Vortices in single-

component [7–9] and multicomponent [10–12] BECs have
been realized experimentally, making a good candidate to
study the dynamics of vortices in 2D and 3D BECs. Most
of the theoretical studies, however, are limited to the Thomas-
Fermi regime (TFR) in a single-component BEC [9,13–15].
While dynamics of the macroscopic wave function of BEC is
described by Gross-Pitaevskii equation (GPE) in Eq. (2) below,
TFR suppresses the kinetic energy part in GPE in the lowest
approximation and therefore the lowest-order wave function
cannot have a healing length which is a hallmark of the vortex
core. It is highly desirable to construct the effective theory of
vortices beyond the TFR.

In this paper, we consider the vortices in 2D multicom-
ponent BECs beyond the Thomas-Fermi regime. To consider
the effective dynamics of pointlike vortices, we extract some
degrees of freedom by using the variational approach, and
derive an effective dynamics with finite degrees of freedom.
For the case of a single-component BEC without a trap, it is
well known that the effective Hamiltonian for many vortex
systems has a standard form [16–18],

H ∼
∑
j>i

ninj ln rij , (1)

in the limit of infinitesimal vortex cores. Here ni is the winding
number of the ith vortex, and rij = √

(xi − xj )2 + (yi − yj )2

is the distance between cores of ith and j th vortices. Equa-
tion (1) shows that there is no momentum degree of freedom,
and coordinates xi and yi formally conjugate each other. On
the other hand, in the case of multicomponent BECs in a trap
with each component having a single vortex, we shall see
vortices acquire momentum degrees of freedom or inertia. A
very preliminary idea of the present work was reported in the
conference proceedings [19].

This paper is organized as follows. In Sec. II, starting from
the multicomponent GPE, we apply the variational method
with use of vortex solitons in the Padé approximation, and
derive the effective Hamiltonian for vortices. Confining to the
case of two and three vortices, we numerically investigate the
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detailed dynamics of vortices in Sec. III. There we see a chaotic
behavior of the system consisting of three vortices. Section IV
is devoted to conclusions and discussions.

II. EFFECTIVE NONLINEAR DYNAMICS GENERATED
BY THE MULTICOMPONENT GPE

In this section, we consider the trapped multicomponent
GPE with vortices and extract some degrees of freedom of
vortex soliton by using a variational technique.

BEC at zero temperature is described by the GPE. We shall
consider a 2D system of trapped n-component macroscopic
wave function �1(t,x,y),�2(t,x,y), . . . ,�n(t,x,y) satisfying
the equations,

i
∂

∂t
�i(t,x,y) =

[
− ∇2 + V (x,y) + gii |�i(t,x,y)|2

+
∑
j �=i

gij |�j (t,x,y)|2
]
�i(t,x,y), (2)

for i,j = 1, . . . ,n. Here the normalization condition
for each component of wave functions is defined by∫ |�i(t,x,y)|2dxdy = 1 after a proper rescaling of �i by the
particle number N common to all components. The effect of
trapping is expressed by V (x,y) = (x2 + y2). Equation (2) is

expressed with use of scaled variables: using the confining

length l =
√

h̄
mω

and oscillation period τ = ω−1, space co-

ordinates are scaled by l, time by 2τ , wave function by 1
l
,

and nonlinearity by h̄2

2m
. The nonlinearity coefficients, gij ≡

8πNaij / l with aij the scattering length for binary collisions,
are assumed to be positive and much larger than unity. gii and
gij with i �= j stand for intracomponent and intercomponent
interactions, respectively. We shall choose gii = g1(�1) for
all i and gij = g2(�1) for i �= j .

In the absence of the intercomponent interaction, each
component has stationary states of a vortex. So, we consider
the case in which each component has one vortex and
vortices interact with each other through the intercomponent
interaction. Our goal is to derive from Eq. (2) the evolution
equation for the collective coordinates of trial vortex functions
(TVFs). The collective coordinates for a vortex are phase
variables besides the coordinates of a vortex core. We shall
use TVF beyond the Thomas-Fermi regime, by incorporating
the effect of a kinetic energy in GPE in Eq. (2): As for the
amplitude of TVF, we choose a vortex function based on the
Padé approximation [20,21] which is regularized due to a trap.
As for its phase, we Taylor expand the phase with respect
to space coordinates around the vortex core. Then TVF with
winding number ni = ±1 is given by

�i(t,x,y) ≡ fi(t,x,y) exp[iφi(t,x,y)] = N exp

[
−x2 + y2

2�

] √
(x − xi)2 + (y − yi)2

2ξ 2 + (x − xi)2 + (y − yi)2

× exp

[
i

[
ni tan−1

(
y − yi

x − xi

)
+ αi(x − xi) + βi(y − yi)

]]
, (3)

with the normalization factor N = 1√
π�−2πe

2ξ2
� ξ 2�(0,

2ξ2

�
)

. Here

�(0,z) ≡ ∫ ∞
z

t−1e−t dt is the incomplete gamma function of
the second kind, whose expansion with respect to z is given in
Eq. (A10) in Appendix A.

The collective coordinates are locations of the core (xi,yi)
and the first-order coefficients (αi,βi) of Taylor expansion of
the phase φi(t,x,y) with respect to (x − xi,y − yi). � in the
Gaussian amplitude factor reflects a trap in Eq. (3). ξ is the
healing length related to vortex core size. The condition to
minimize the energy E = ∫

dxdy(|∇�i |2 + V (x,y)|�i |2 +
g1

2 |�i |4) for the individual static component in Eq. (3)

centered at the origin, leads to � ∼=
√

3
2 − (γ + 1)n2

i + g1

4π
and

ξ ∼= |ni |π1/4√
2+γ

g
−1/4
1 , respectively, where γ (=0.57721) is Euler

constant. We shall use these values for � and ξ in this paper.
The form in Eq. (3), which is a product of the vortex

solution in the absence of a harmonic trap and Gaussian factor
due to the trap, gives a suitable TVF for a vortex under the
strong nonlinearity. A different form with use of eigenstates
(with nonzero angular momenta) under the 2D harmonic trap
[22–24] has no small healing length, results in the intervortices
force growing with intervortices distance, etc., and cannot be
suitable as TVF under the strong nonlinearity.

First of all we note: GPE in Eq. (2) can be derived from the
variational principle that minimizes the action obtained from
Lagrangian density L for field variables,

−L =
∑

i

[
i

2
(�i�̇

∗
i − �∗

i �̇i) + |∇�i |2

+ (x2 + y2)|�i |2 + g1

2
|�i |4

]
+

∑
j>i

g2|�i |2|�j |2. (4)

In fact, Eq. (2) is obtained from the Lagrange equation:

∂

∂t

∂L
∂�̇∗

i

− ∂L
∂�∗

i

+ ∇ ∂L
∂∇�∗

i

= 0. (5)

We now insert TVF in Eq. (3) into Eq. (4). Noting (xi,yi)
and (αi,βi) as time-dependent variables, Eq. (4) becomes

−L =
∑

i

[(
ẋi

∂φi

∂xi

+ ẏi

∂φi

∂yi

+ α̇i

∂φi

∂αi

+ β̇i

∂φi

∂βi

)
f 2

i

+
(

∂fi

∂x

)2

+
(

∂fi

∂y

)2

+
((

∂φi

∂x

)2

+
(

∂φi

∂y

)2)
f 2

i

+ g1

2
f 4

i + (x2 + y2)f 2
i

]
+ g2

∑
j>i

f 2
i f 2

j . (6)
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TABLE I. Expressions for coefficients in Eq. (8) (Taylor expan-
sions with respect to ξ 2/�).

Coefficients Expressions

d1 1 + 2γ ξ2

�
+ 2ξ2

�
ln 2ξ2

�

d2
1
2 − ξ2

�

d3 − γ

2 − 1
2 ln 2ξ2

�
+ ξ2

�
− γ ξ2

�
− ξ2

�
ln 2ξ2

�

d4
3
2 + ξ2

�
+ 4γ ξ2

�
+ 4ξ2

�
ln 2ξ2

�

d5
1
2 + γ ξ2

�
+ ξ2

�
ln 2ξ2

�

d6 1 + 5ξ2

�
+ 6γ ξ2

�
+ 6ξ2

�
ln 2ξ2

�

d7
ξ2

�
+ 2γ ξ2

�
+ 2ξ2

�
ln 4ξ2

�

d8 � − 2ξ 2

d9 1 + 2ξ2

�
+ 2γ ξ2

�
+ 2ξ2

�
ln 2ξ2

�

By integrating L over space coordinates (x,y), we obtain
the effective Lagrangian L for the collective coordinates:

L =
∫∫

dxdyL. (7)

In the limit of ξ 2/� 
 1, L is expressed by

−L =
(

N

N0

)2 ∑
i

[
− ni

�
(ẋiyi − ẏixi) e− l2

i
�

(
d1 + d2l

2
i

�

)

+ (
α2

i + β2
i − (αiẋi + βiẏi)

)
d1

− (α̇ixi + β̇iyi)

(
1 − 2ξ 2

�

(
1 − l2

i

2�

))

+ 1

�
e− l2

i
�

(
2n2

i d3 + d4 + 2n2
i

l2
i d5

�
+ d6

l2
i

�

)

+ 2
ni

�
(yiαi − xiβi) e− l2

i
�

(
d1 + l2

i

�
d2

)

+ e− l2
i
�

(
d8 + l2

i d9
) +

(
N

N0

)2
g1

π�

(
1

4
+ d7e

− 2l2
i

�

) ]

+
∑
j>i

U
(
rij ,l

ij

G

)
. (8)

Here, li =
√

x2
i + y2

i and N0 = 1√
π�

. Expressions (Taylor

expansions with respect to ξ 2/�) for coefficients d1 ∼ d9 are
listed in Table I and the derivation of typical coefficients is
described in Appendix A. The expression for the intervortice
interaction U (rij ,l

ij

G ), which is a function of intervortice

distance rij =
√

x2
ij + y2

ij and distance of the center of masses

from the origin l
ij

G =
√

(xij

G )2 + (yij

G )2 , will be given in
Appendix B.

Lagrange equations of motion for the phase variables αi

and βi ,

d

dt

(
∂L

∂α̇i

)
− ∂L

∂αi

= 0,

d

dt

(
∂L

∂β̇i

)
− ∂L

∂βi

= 0, (9)

lead to

αi � B1ẋi − niB2yi, βi � B1ẏi + niB2xi. (10)

Equation (10) shows that (αi,βi) correspond to generalized
momentum conjugate to (xi,yi) under the vector potential.
Then the equation of motion for (xi,yi),

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi

= 0, (11)

d

dt

(
∂L

∂ẏi

)
− ∂L

∂yi

= 0, (12)

combined with Eq. (10), gives

ẍi � niB3ẏi − B4xi − B5

∑
j �=i

∂U (xij ,yij )

∂xi

,

(13)

ÿi � −niB3ẋi − B4yi − B5

∑
j �=i

∂U (xij ,yij )

∂yi

.

Coefficients B1 ∼ B5 are given by

B1 = d1 − 1 + 2ξ 2

�

2d1
∼ (γ + 1)ξ 2

�
,

B2 = 1

�
,

B3 = − 4d2
1

�
(
d1 − 1 + 2ξ 2

�

)2 ∼ − �

(γ + 1)2ξ 4
,

B4 = 4d1d9(
d1 − 1 + 2ξ 2

�

)2 ∼ �2

(γ + 1)2ξ 4
,

B5 =
(

N

N0

)2 2d1(
d1 − 1 + 2ξ 2

�

)2 ∼ �2

2(γ + 1)2ξ 4
. (14)

Equations (10) and (13) are valid aside from a multiplicative

global factor [1 + O( l2
i

�
)]. The smallness of l2

i

�
will be justified

a posteriori. Equation (13) shows that dynamics of coordinates
(xi,yi) is very similar to charged particles with charges ni =
±1 under a strong spring force with a force constant B4 =
O(g2

1) and in the presence of Lorentz force with the magnetic
field B = (0,0,B3). One should note that the spring force here
has nothing to do with that of the original harmonic potential
V (x,y) in Eq. (2). The Hamiltonian corresponding to Eq. (13)
can be given by

H =
∑

i

[
1

2m
[pi − niAi]

2 + Wi +
∑
j>i

Ũ
(
rij ,l

ij

G

)]
, (15)

with use of the momentum pi ≡ mṙ + niAi , unit mass
m = 1, the vector potential Ai = B3

2 (−yi,xi), and the scalar
potential Wi = 1

2B4(x2
i + y2

i ).
All values B1 ∼ B5 depend on the strength of interaction

g1 which is tunable by Feshbach resonance. In the effective
particle dynamics described by Eqs. (13) and (15), the spring
constant B4 is large enough to guarantee particles with unit
mass to be confined in the neighborhood of the origin (i.e., the

trapping center). This finding justifies l2
i

�

 1 and will also be

utilized to obtain the intervortice interaction in Appendix B.
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The scaled intervortice interaction Ũ (rij ,l
ij

G ) is given with
use of Eq. (B10) as

Ũ
(
rij ,l

ij

G

) = B5U4
(
rij ,l

ij

G

)
∼= G

r2
ij

exp

(
− r2

ij + 4
(
l
ij

G

)2

2�

)
, (16)

with the coupling constant,

G = 4g2

(γ + 1)2π1/2
. (17)

Therefore the intervortice interaction is singularly repulsive
and short ranged with respect to rij with its magnitude
decreasing with increasing l

ij

G .
Compared to Eq. (1), it is clear that the system has

momentum degrees of freedom, and vortices have a behavior
of particle with inertia rather than that of vortex point
without inertia widely used in the conventional theory of
hydrodynamics [25–29]. This is one of the main assertions
of the present paper. The inertia of vortex appears already in
the single-component BEC with a trap.

In closing this section we should comment that we also
attempted to apply the collective coordinate method using a
Laguerre-type trial function which is a good candidate for TVF
in the case of a weak nonlinearity [22–24]. However, such
TVF in the case of a strong nonlinearity proved to result in (1)
a time-dependent mass for each vortex and (2) the intervor-
tex interaction growing with increasing intervortex distance.
Hence this TVF was not suitable to describe a dynamics of
vortices in BECs with a strong nonlinearity. On the other hand,
the effective vortex dynamics in the Thomas-Fermi regime
[9,13–15], which suppresses the kinetic energy in constructing
TVF, leads to neither nonzero inertia nor Lorentz force.

III. DYNAMICS OF TWO AND THREE VORTICES
WITH INERTIA

We shall now focus on the system of two vortices with equal
winding numbers, and see how the trajectory generated by
effective particle dynamics in Eqs. (13) and (15) well mimics
the orbit of the singular points of wave vortices calculated
by using GPE in Eq. (2). We shall then move to the system
of three vortices with equal winding numbers, and find that
chaos appears even in the three-vortex system. This feature
is different from that of the point vortice system in a single-
component BEC in which chaos can appear in the case of more
than three vortices.

A. Dynamics of two vortices

For two vortices with the same winding numbers n1 = n2 =
1, Hamiltonian (15) can be rewritten as

H = 1

2

(
p2

x,T + p2
y,T + p2

x,R + p2
y,R

) − B3

2
(px,T yT − py,T xT

+px,RyR −py,RxR) +
(
B2

3

8
+ B4

2

) (
x2

T + y2
T + x2

R + y2
R

)
+ G

2
(
x2

R + y2
R

) exp

(
−x2

R + y2
R + x2

T + y2
T

�

)
, (18)

where (xT ,yT ) and (xR,yR) play the role of the center-of-
mass and relative coordinates, respectively, and (px,T ,py,T )
and (px,R,py,R) are their canonical-conjugate variables. To be
explicit,

(xT ,yT ) = 1√
2

(x1 + x2,y1 + y2),

(xR,yR) = 1√
2

(x1 − x2,y1 − y2),

(px,T ,py,T ) = 1√
2

(px,1 + px,2,py,1 + py,2),

(px,R,py,R) = 1√
2

(px,1 − px,2,py,1 − py,2). (19)

Hamiltonian (15) cannot be reduced to two independent two
degree-of-freedom subsystems (center-of-mass system and
relative-coordinate system) because the intervortex interaction
depends not only on rij but also on l

ij

G . However, we see mostly
KAM tori in this system. As shown in Fig. 1, we find that
the trajectory of (xR,yR) generated by effective two-particle
dynamics well mimics the corresponding orbit obtained by a

FIG. 1. (Color online) Two-vortice dynamics with identical wind-
ing numbers (n1 = n2 = 1). g1 = g2 = 100. Initial values are as
follows: x1(0) = y1(0) = −x2(0) = −y2(0) = 1√

2
; ẋ1(0) = ẋ2(0) =

0; ẏ1(0) = −ẏ2(0) = 1.1. Solid line is a trajectory for relative
coordinates of a pair of particles calculated by iterating the canonical
equations for the Hamiltonian (18); crosses are corresponding results
for a pair of singular points of interacting vortices constructed
from the numerical iteration of GPE in Eq. (2); four subpanels are
wave-function patterns for interacting vortices.
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pair of singular points calculated by using GPE in Eq. (2).
This fact justifies the validity of our trial function in Eq. (3)
and the resultant equation of motion for collective coordinates
in Eqs. (13) and (15).

B. Dynamics of three vortices

Encouraged by the effectiveness of the collective coordinate
method in the case of two vortices, we proceed to the dynamics
of three vortices with the identical winding numbers n1 =
n2 = n3 = 1, whose Hamiltonian (15) becomes

H = 1

2

(
p2

xC + p2
yC + p2

xT + p2
yT + p2

xR + p2
yR

)
− B3

2
(xCpyC + xRpyR + xT pyT

− yCpxC − yRpxR − yT pxT )

+
(

B2
3

8
+ B4

2

) (
x2

C + x2
R + x2

T + y2
C + y2

R + y2
T

)
+

∑
(i,j )=(1,2),(2,3),(3,1)

G

(xi − xj )2 + (yi − yj )2

× exp

(
−x2

i + y2
i + x2

j + y2
j

�

)
, (20)

where Jacobi coordinates (xT ,yT ,etc) are defined by

(xT ,yT ) = 1√
3

(x1 + x2 + x3,y1 + y2 + y3),

(xC,yC) = 1√
2

(x1 − x3,y1 − y3),

(xR,yR) = 1√
6

(x1 + x3 − 2x2,y1 + y3 − 2y2),

(pxR,pyR) = 1√
6

(px1 + px3 − 2px2,py1 + py3 − 2py2),

(pxT ,pyT ) = 1√
3

(px1 + px2 + px3,py1 + py2 + py3),

(pxC,pyC) = 1√
2

(px2 − px1,py2 − py1), (21)

which conserve the canonical structure ({xT ,pxT } =
1
3

∑3
j=1{xj ,pxj } = 1, etc.). Here (xT ,yT ), (xC,yC), and

(xR,yR) represent the center of mass of all three components,
the relative displacement, and the bisector of the vertex
(x2,y2), respectively. In marked contrast to the massless three
vortex system in two dimensions which is integrable, all six
degrees of freedom are coupled and the number of independent
constants of motion is two (energy and z component of angular
momentum). Then Poincaré-Bendixon’s theorem guarantees
the nonintegrability and chaos of the three-inertial-vortex
system [30].

We can construct from (20) the canonical equations of
motion for xT ,yT ,xC,yC,xR,yR and their canonical-conjugate
variables, which are solved numerically. Poincaré cross section
and power spectra for the kinetic energy Ek(t) in Fig. 2 give
a clear evidence of high-dimensional chaos. Because of the
short-range nature of the interaction, we see the emergence of
chaos in low-lying energy regions where vortices often meet
each other.

FIG. 2. (Color online) Three-vortice dynamics with identi-
cal winding numbers (n1 = n2 = n3 = 1). g1 = g2 = 100. Ini-
tial values are as follows: xR(0) = xC(0) = xT (0) = 1, yR(0) =
−1, yC(0) = yT (0) = 1; px,R(0) = px,C(0) = px,T (0) = py,R(0) =
py,C(0) = py,T (0) = 1. (a) Poincaré cross section; (b) Power spectra
for kinetic energy Ek(t).

IV. CONCLUSION

We explored vortex dynamics in the two-dimensional
multicomponent BEC in the harmonic trap in the case that each
component has a single vortex. The investigation beyond the
Thomas-Fermi regime is made on the nonlinear Schrödinger
equation with strong repulsive cubic nonlinearity. With use
of a trial vortex function based on the Padé approximation
which is regularized due to a trap, we applied a collective-
coordinates method, obtaining an effective nonlinear dynamics
for vortex cores (particles), which is equivalent to charged
particles with inertia under a strong spring force and in the
presence of Lorentz force with the uniform magnetic field.
The interparticle interaction is singularly repulsive and short
ranged with its magnitude decreasing with increasing distance
of the center of mass from the trapping center. The most
important finding is the nonzero inertia of vortices, which
is not present in the conventional theory of point vortices
widely used in the usual hydrodynamics [25–29]. The system
of three vortices with inertia can be chaotic, in contrast to the
corresponding case of point vortices without inertia.
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APPENDIX A: CALCULATION OF TYPICAL INTEGRALS

We shall calculate some integrals used in this paper.

1. Integral A ≡ ∫∫
dxd y f 2

i

(
ẋi

∂φi
∂xi

+ ẏi
∂φi
∂ yi

)

Substituting Eq. (3) into the above integrand, we find

A = 1

π�

(
N

N0

)2 ∫ ∞

−∞

∫ ∞

−∞
dxdye− x2+y2

�

×
[
ni

ẋi(y − yi) − ẏi(x − xi)

2ξ 2 + (x − xi)2 + (y − yi)2

− (αiẋi + βiẏi)
(x − xi)2 + (y − yi)2

2ξ 2 + (x − xi)2 + (y − yi)2

]
, (A1)

where N0 = 1√
π�

and N is the normalization constant defined
below Eq. (3). Equation (A1) is a sum of ni-dependent
term (A1) and (αi,βi)-dependent term (A2). Below we shall
concentrate on A1 because A2 is easily calculable. Using polar
coordinates as

x − xi = ρ cos θ, xi = li cos φi,

y − yi = ρ sin θ, yi = li sin φi,

dxdy = ρdρdθ, (A2)

we rewrite the integral A1 as

A1 = ni

π�

(
N

N0

)2 ∫ ∞

0
dρe− ρ2+l2

i
�

ρ2

2ξ 2 + ρ2

×
∫ 2π

0
dθ (ẋi sin θ − ẏi cos θ )e− 2ρli

�
cos (θ−φi ). (A3)

The θ integration gives∫ 2π

0
dθ (ẋi sin θ − ẏi cos θ )e− 2ρli

�
cos (θ−φi )

=
∫ 2π

0
dθ̃ [(ẋ cos φi + ẏ sin φi) sin θ̃

+ (ẋ sin φi − ẏ cos φi) cos θ̃ ]e− 2ρli
�

cos θ̃

= −π (ẋiyi − ẏixi)

(
2ρ

�
+ ρ3l2

i

�3

)
. (A4)

Here we took θ̃ = θ − φi and used the formulas like∫ 2π

0
dθ̃ cos θ̃e−z cos θ̃ = −2πI1(z), (A5)

where I1(z) is the modified Bessel function, which is expanded
as

I1(z) = z

2
+ z3

16
+ O(z5). (A6)

As for ρ integration, we use identities like

ρ3

2ξ 2 + ρ2
= ρ − 2ξ 2ρ

2ξ 2 + ρ2
, (A7)

and then apply the formulas,∫ ∞

0
dρρne− ρ2

� = 1

2
�

n+1
2 �

(
n + 1

2

)
, (A8)

and ∫ ∞

0
dρe− ρ2

�
ρ

2ξ 2 + ρ2
= 1

2
e

2ξ2

� �

(
0,

2ξ 2

�

)

= 1

2
e

2ξ2

�

(
−γ − ln

2ξ 2

�
+ 2ξ 2

�
−

(
ξ 2

�

)2
)

. (A9)

�(0,z) ≡ ∫ ∞
z

t−1e−t dt above is the incomplete gamma func-
tion of the second kind and can be expanded as

�(0,z) = −γ − ln z + z − z2

4
+ z3

18
+ O(z4). (A10)

The final result is

A1 = −
(

N

N0

)2
ni

�
(ẋiyi − ẏixi)e

− l2
i
�

(
d1 + d2l

2
i

�

)
, (A11)

where d1 and d2 are listed in Table I. Equation (A11), combined
with

A2 = −
(

N

N0

)2

(αiẋi + βiẏi)d1, (A12)

gives rise to the calculated result for A in Eq. (A1).

2. Integral B ≡ g1
2

∫∫
f 4

i dxd y

B = g1

2π2�2

(
N

N0

)4 ∫ ∞

−∞

∫ ∞

−∞
dxdye− 2(x2+y2)

�

×
(

(x − xi)2 + (y − yi)2

2ξ 2 + (x − xi)2 + (y − yi)2

)2

. (A13)

Using polar coordinates in (A2), we rewrite the integral as

B = g1

2π2�2

(
N

N0

)4 ∫ ∞

0
ρdρe− 2(ρ2+l2

i
)

�

×
(

ρ2

2ξ 2 + ρ2

)2 ∫ 2π

0
dθe− 4ρli

�
cos (θ−φi ). (A14)

First, we carry out the θ integration. Note that∫ 2π

0
dθe−z cos θ = 2πI0(z), (A15)

where I0(z) is the modified Bessel function, which is expanded
as

I0(z) = 1 + z2

4
+ z4

64
+ O(z6). (A16)

Concerning the ρ integration, we first employ the decomposi-
tion,

ρ4

(2ξ 2 + ρ2)2
= 1 − 4ξ 2

2ξ 2 + ρ2
+ 4ξ 4

(2ξ 2 + ρ2)2
, (A17)
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and then apply the formulas like∫ ∞

0
dρρe− 2ρ2

� I0

(
4ρli

�

)
= �

4
e

2l2
i

� . (A18)

The final result is

B =
(

N

N0

)4
g1

π�

[
1

4
+ d7e

− 2l2
i

�

]
, (A19)

where d7 is given in Table I.

APPENDIX B: CALCULATION OF INTERVORTICE
INTERACTION U

This interaction is due to the integral,

U ≡ g2

∫ ∞

−∞

∫ ∞

−∞
f 2

i f 2
j dxdy

= g2

π2�2

(
N

N0

)4 ∫ ∞

−∞

∫ ∞

−∞
dxdye− 2(x2+y2)

�

× (x − xi)2 + (y − yi)2

2ξ 2 + (x − xi)2 + (y − yi)2

× (x − xj )2 + (y − yj )2

2ξ 2 + (x − xj )2 + (y − yj )2
. (B1)

With use of a prescription U ≡ g2

π2�2 ( N
N0

)4Û , the integral
becomes

Û =
∫ ∞

−∞

∫ ∞

−∞
dxdye− 2(x2+y2)

�

×
[

1 − 2ξ 2

(
1

2ξ 2 + (x − xi)2 + (y − yi)2
+ (i → j )

)

+ 4ξ 4

(2ξ 2 + (x − xi)2 + (y − yi)2)(i → j )

]

≡ Û0 + Û2 + Û4. (B2)

Û0, Û2, and Û4 corresponds to the contributions from
O(ξ 0), O(ξ 2), and O(ξ 4), respectively. Among them, Û4 is
responsible to the vortex-vortex interaction, which we shall
calculate below.

FIG. 3. (Color online) New integration variables, center-of-mass
coordinates, and relative coordinates.

Let us define the center-of-mass and relative coordinates by

x
ij

G = xj + xi

2
; y

ij

G = yj + yi

2
, (B3)

and

xi − xj = rij cos φij ; yi − yj = rij sin φij , (B4)

respectively, and transform the integration variables to new
ones as (see Fig. 3)

x − x
ij

G = ρ cos θ, x
ij

G = l
ij

G cos φ
ij

G,

y − y
ij

G = ρ sin θ, y
ij

G = l
ij

G sin φ
ij

G,

dxdy = ρdρdθ. (B5)

Then Û4 in Eq. (B2) becomes

Û4 =
∫ ∞

0
ρdρ

∫ 2π

0
dθ ′e

−2
�

((lG)2+ρ2+2ρl
ij

G cos (θ ′+φij −φ
ij

G ))

×
[

4ξ 4(
2ξ 2 + ρ2 + r2

ij

4

)2 − ρ2r2
ij cos 2(θ ′)

]
, (B6)

where we moved to a new angle variable θ ′ ≡ θ − φij . Using
the expansion,

e−X cos (θ ′+α) =
∞∑

n=−∞
(−1)nIn(X)einαeinθ ′

, (B7)

in Eq. (B6) and keeping the n = 0 term, the integration over
the angle variable leads to

∫ 2π

0
dθ ′ 4ξ 4(

2ξ 2 + ρ2 + r2
ij

4

)2 − ρ2r2
ij

1+cos 2θ ′
2

= 8πξ 4

2ξ 2 + ρ2 + r2
ij

4

1√(
2ξ 2 + (

ρ − rij

2

)2)(
2ξ 2 + (

ρ + rij

2

)2) , (B8)

where we used the formula
∫ 2π

0 dθ 1
c+b cos θ

= 2π√
(c−b)(c+b)

.
We shall proceed to ρ integration. Here we should note the following: In the case ξ 
 1, the Lorentzian-like function

on the right-hand side of Eq. (B8) is sharply peaked around ρ = rij

2 and is well approximated for ρ > 0 by Gaussian,
8
√

2πξ 3

r3
ij

exp (− (ρ− rij

2 )2

4ξ 2 ). Therefore, the ρ integration leads to

Û4 = 8
√

2πξ 3

r3
ij

e− 2(lG)2

�

[ ∫ ∞

0
ρe− 2ρ2

� I0

(
4ρl

ij

G

�

)
exp

(
−

(
ρ − rij

2

)2

4ξ 2

)
dρ

]

= 8π3/2ξ 4

(1 + ξ 2/�)(1 + 8ξ 2/�)1/2

1

r2
ij

I0

(
2l

ij

Grij

�(1 + 2ξ 2/�)

)
exp

(
−2l2

G

�

)
exp

(
− r2

ij

2�(1 + 8ξ 2/�)

)
, (B9)
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where the integration was carried out by the saddle-point approximation which is justified in the case ξ 
 1. Since each vortex

dynamics occurs in the range 2l
ij

G rij

�

 1 because of the notion above Eq. (16) in Sec. II, we may approximate I0( 2l

ij

G rij

�(1+2ξ 2/�) ) ∼ 1
and neglect the contributions from In(x) with n = 1,2, . . . in the region x 
 1. Then we reach

U4 ≡ U4
(
rij ,l

ij

G

) ≡ g2

π2�2

(
N

N0

)4

Û4

≈ 8g2ξ
4

π1/2�2

1

r2
ij

exp

(
− r2

ij + 4
(
l
ij

G

)2

2�

)
, (B10)

with use of ( N
N0

)4 ≈ 1. At first the magnitude of the intervortices interaction looks very small [i.e., O(ξ 4)], but, after scaling to
make unity the inertial mass of each vortex, it becomes O(g2) [see Eq. (17)]. It is interesting that the intervortice interaction
energy in a multicomponent BEC with no trap estimated in a different approximation (i.e., under the Abrikosov ansatz) is also
proportional to 1

r2
ij

in the asymptotic region [31].

Finally we note the remaining contributions, Û0 + Û2, in Eq. (B2). Their integration is quite simple and gives rise to

U0 + U2 ≡ g2

π2�2

(
N

N0

)4

(Û0 + Û2)

≈ g2

π�

(
N

N0

)4
[

1

2
+ 2

ξ 2

�

(
γ + ln

2ξ 2

�

)(
e− l2

i
� + e− l2

j

�

)]
. (B11)

In the final expression, the first term is constant, giving no contribution to the dynamics in Eq. (13), and the second one is
a sum of single-particle contributions of O( ξ 2

�
) which renormalizes the 7th line in Eq. (8), giving no substantial contribution

to Eq. (13).

[1] C. J. Pethick and H. Smith, Bose-Einstein Condensation
in Dilute Gases (Cambridge University Press, Cambridge,
2002).

[2] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation
(Oxford University Press, Oxford, 2003).

[3] P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González,
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4264 (2000).
[23] J. J. Garcı́a-Ripoll, G. Molina-Terriza, V. M. Pérez-Garcı́a, and
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