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Abstract: A stable iterative algorithm for estimating elements of the matrix gain of the 
Kalman filter has been developed. The traditional Kalman filter equations are given. Algorithms for 
autonomous calculation of the stationary Kalman filter gain are presented, which are performed 
under conditions relating to the system parameters. A non-linear iterative equation is solved for 
the gain of the Kalman filter. Modeling results are given, these Kalman filtering expressions for a 
linear discrete system and the actual filtering process is the current process for predicting and 
correcting recursive and iterative nature. 
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INTRODUCTION. In most control processes or multi-step decision-making procedures in 
technical and technological systems, there are inherent uncertainties. The quality criterion is taken 
as the expectation of the cost function: it must be minimized using a sequence of controls. The 
procedure for choosing these controls, which is a multi-step decision-making process, is the 
problem of stochastic control [1-6]. 

The main reason for the divergence in the Kalman filter is that the filter gain tends to zero 
very quickly. Therefore, the estimate ceases to be dependent on the sequence of observations and 
the growing error of observations does not affect it. This difficulty can be overcome by one of the 
simple modifications of the filtering algorithm. Divergence may arise due to too little weight of 
new information or, conversely, due to too much weight of past observations. Therefore, 
divergence is a contradictory phenomenon. Thus, for example, when the input noise is small 
compared to the observations, the Kalman filtering error variance, and hence the gain, tends to 
decrease rapidly as time increases. In the case when the message model contains no control noise 
at all, the gain asymptotically tends to zero. 

MATERIAL AND METHODS. This feature, which is not generally unexpected since each 
sample (on average) contains much more unwanted observation noise than control noise 
information, tends to "cut off" the filter from the observation sequence and thus cause instability. 
How strongly the divergence manifests itself and in what cases it will arise at all, all this depends 
on the length of the observation interval and on the accuracy of modeling the real process [1-6]. 

Thus, the noted circumstances indicate the need to create stable algorithms for estimating 
the state of dynamic systems under parametric a priori uncertainty and to synthesize 
computational schemes for their practical implementation [7-9]. Consider a linear dynamic system 
described by the equations: 
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where xi is the n-dimensional state vector at time i, zi is the m-dimensional measurement vector at 
time i, A is the nxn system transition matrix, H is the mxn output matrix, wi is the plant noise at 
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time i, and vi is the measurement noise at time i.  {wi} and {vi} are Gaussian zero-mean white 
random processes with covariance matrices Q and R, respectively. 

If we talk about the Kalman filter, the discrete time Kalman filter [8,10,11] is the most well-
known algorithm that solves the filtering problem. In fact, Kalman filter faces simultaneously two 
problems as follows: estimation (the aim is to recover at time i information about the state vector 
at time i using measurements up till time i) and prediction (the aim is to obtain at time i
information about the state vector at time i +1 using measurements up till time i; it is clear that 
prediction is related to the forecasting side of information processing). 

To estimate the state vector ix  of the dynamic system (1), traditional Kalman filter 
equations of the form are usually used: 
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where, for 0i , with initial condition 01/0 PP  for the time instant, where there are no 
measurements given, The Kalman filter gain Ki is a matrix of dimension nxm, R and P0 are positive 
definite matrices. We present algorithms for the steady state Kalman filter gain autonomous 
computation. These algorithms hold under conditions concerning the system parameters.  We 
define the matrix: 
 

HKG ii ,                                      (5)

where Gi is a nonsymmetric matrix of dimension nxn. Information for us, it is also clear that there 
exists a steady state value: 
 

HKG
~~

.                                    (6)

Also, we define the matrix: 
 

HRHS T 1 .                           (7)

Note that S is an nxn symmetric positive semidefinite matrix and S is a positive definite if 
rank(H)=n; this means that S is a nonsingular matrix in the case, rank(H)=n with m>n [12]. Now, 
the Kalman direct steady state filter gain factors are calculated. We present algorithms for the 
direct computation of the steady state Kalman filter K~ . The proposed algorithms compute directly 
the steady state Kalman filter gain, that is, without using HKG

~~ . All these algorithms hold under 
the assumption that n=m. Note that, since nHrank )( , H and S are nonsingular matrices. On a 
basis (5) and (7), we are able to derive the following nonlinear iterative equation with respect to 
the Kalman filter gain kK : 
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Then, the nonsingularity of S and (7) allow us to write the equality in (8) as: 
 

,])[(

])[(
1

11111
1

kk

k
TTTT

k
TT

k

BKLDKC

HAKRHAHSRHHQAAKRHQAK
       (9)

Where 
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RESULTS AND DISCUSSION. Thus, it is known [10] that the prediction error covariance tends 
to the steady state prediction error covariance and that the convergence is independent of the 
initial uncertainty, that is, independent of the value of the initial condition P0. Thus, we are able to 
assume zero initial condition P0=0 and so we are to use the initial condition K0=0. It is clear that kK

tends to a steady state value K
~

 satisfying: 1]
~
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~

(
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Based on expressions (9), we are able to derive the following nonlinear iterative equation 

with respect to the Kalman filter gain kK : ,][])[( 111
1 dbKlcBKLDKCK kkkk  where 

L, , C, D are given by (10) and  
,,,, 1111 LdCLcBLbBCLDl .][ 1

000 RHHPHPK TT  It is known [7-10] that the 
prediction error covariance tends to the steady state prediction error covariance and that the 
convergence is independent of the initial uncertainty, that is, independent of the value of the 
initial condition P0. 

Thus, we are able to assume zero initial condition P0=0. In this case, in order to avoid 1
0K , 

we are to use the initial condition cK1 . It is clear that kK  tends to a steady state value K~

satisfying: dbKacK 11 ]
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 is a matrix of dimension nn 22  and L, , C, D as in (10). 

Thus, working as in the doubling iterative algorithm and using zero initial condition 00P , 

so 01
000 XYK ; we are able to derive the following nonlinear iterative equations: 
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It is clear that kkk KXYck 2

1

22
tends to a steady state value K~ . Using on this iterative 

algorithm, we will create an algebraic algorithm for K~ computation. Working as in the algebraic 
algorithm and using the parameters L, , C, D by (10), we derive
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the steady state Kalman filter is 1
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This algorithm for the computation of the steady state Kalman filter gain K~ . It is clear that 
the direct computation of the Kalman filter gain is feasible only if the following restriction holds: 
n=m. The advantage of the presented algorithms is the autonomous computation of the steady 
state Kalman filter gain. Especially, the steady state Kalman filter gain is important, when we 
want to compute the parameters of the steady state Kalman filter:
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It is obvious from (11) that the parameters of the steady state Kalman filter are related to 
the steady state Kalman filter gain. In particular, the steady state prediction error covariance can 
be computed via the steady state gain and is given by
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Fig 1. Computing circuit based on the Kalman filter.
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Based on the above, we can say, the Kalman filter gain arises in Kalman filter equations in 
linear estimation and is associated with linear systems. The gain is a matrix through which the 
estimation and the prediction of the state as well as the corresponding estimation and prediction 
error covariance matrices are computed. For time invariant and asymptotically stable systems, 
there exist steady state values of the estimation and prediction error covariance matrices. There 
exists also a steady state value of the Kalman filter gain. 

Iterative algorithms as well as an algebraic algorithm for the steady state Kalman filter 
computation were presented. These algorithms hold under conditions concerning the system 
parameters. The advantage of these algorithms is the autonomous computation of the steady 
state Kalman filter gain. 

CONCLUSION. Thus, if we talk about modeling, these Kalman filtering expressions for a linear 
discrete system and the actual filtering process is the current process for predicting and correcting 
recursive and iterative nature [13-15]. This does not require storing large amounts of data. When 
new data is received, the new filtering value can be calculated at any time. The figure shows the 
operating mode of the calculator based on the Kalman filter. This stable iterative algorithm for 
estimating elements of the matrix gain of the Kalman filter allows stabilizing the synthesis of the 
dynamic object control system 
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